Revisiting Metchnikoff's work in light of the COVID-19 pandemic

1. Osuchowski, MF, Aletti, F, Cavaillon, J-M, et al. SARS-CoV-2/COVID-19: Evolving Reality, Global Response, Knowledge Gaps, and Opportunities. Shock 2020; 54: 416–437.
Google Scholar | Crossref | Medline2. Osuchowski, MF, Winkler, MS, Skirecki, T, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med. 2021; 9: 622–642
Google Scholar | Crossref | Medline3. Kristian G. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF . The proximal origin of SARS-CoV-2. Nat Med. 2020; 17: 1–3.
Google Scholar4. Anthony, SJ, Johnson, CK, Greig, DJ, Kramer, S, Che, X, Wells, H, et al. Global patterns in coronavirus diversity. Virus Evol 2017; 3: vex012.
Google Scholar | Crossref | Medline5. Apolone, G, Montomoli, E, Manenti, A, et al. Unexpected detection of SARS-CoV-2 antibodies in the prepandemic period in Italy. Tumori. 2021; 107: 446–451.
Google Scholar | SAGE Journals6. Carrat, F, Figoni, J, Henny, J, et al. Evidence of early circulation of SARS-CoV-2 in France: findings from the population-based “CONSTANCES” cohort. Eur J Epidemiol. 2021; 36: 219–222
Google Scholar | Crossref | Medline7. Baay, M, Lina, B, Fontanet, A, et al. Virology, epidemiology, immunology and vaccine development of SARS-CoV-2, update after nine months of pandemic. Biologicals. 2021; 69: 76–82.
Google Scholar | Crossref | Medline8. Salje, H, Tran Kiem, C, Lefrancq, N, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020; 369: 208–211.
Google Scholar | Crossref | Medline9. Zhou, Z, Ren, L, Zhang, L, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe. 2020;27: 883–890.e2.
Google Scholar | Crossref | Medline10. Ackermann, M, Verleden, SE, Kuehnel, M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020; 383: 120–128
Google Scholar | Crossref | Medline11. Merad, M, Martin, JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020; 20: 355–362
Google Scholar | Crossref | Medline12. Wang, C, Xie, J, Zhao, L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020; 57: 102833.
Google Scholar13. Metchnikoff, E . Uber die phagocytäre rolle der tuberkelriesenzellen. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 1888; 113: 63–69.
Google Scholar14. Metchnikoff, E. Contribution à l’étude de la tuberculose “. In: Transaction of the seventh International Congres of Hygiene and Demography, 10-17 August 1891, London, Bacteriology II, pp. 229-230.
Google Scholar15. Metchnikoff, E, Burnet, E, Tarassevitch, L. Recherches sur l’épidémiologie de la tuberculose dans les steppes des Kalmouks. Ann Inst Pasteur 1911; 25: 785–804.
Google Scholar16. Li, H, Liu, L, Zhang, D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020; 395: 1517–1520.
Google Scholar | Crossref | Medline17. Cavaillon, J-M., Chrétien, F. From septicemia to sepsis 3.0 – from Ignaz Semmelweis to Louis Pasteur. Microbes and Infection 2019, 21, 213–221
Google Scholar | Crossref | Medline18. Coze, L., Feltz, V. Recherches expérimentales sur la présence des infusoires et l’état du sang dans les maladies infectieuses. Gazette Médicale de Strasbourg 1869; n°l: 1-4; n°3: 27-30; n°4: 38-42.
Google Scholar19. Reusch, N, De Domenico, E, Bonaguro, L, et al. Neutrophils in COVID-19. Front Immunol. 2021; 12: 652470
Google Scholar | Crossref | Medline20. Middleton, EA, He, XY, Denorme, F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020; 136: 1169–1179
Google Scholar | Crossref | Medline21. Veras, FP, Pontelli, MC, Silva, CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020; 217: e20201129
Google Scholar | Crossref | Medline22. Fisher, J, Mohanty, T, Karlsson, CAQ, et al. Proteome profiling of recombinant dnase therapy in reducing NETs and aiding recovery in COVID-19 patients. Mol Cell Proteomics. 2021; 20: 100113
Google Scholar | Crossref | Medline23. Cavaillon, J-M . Sir Marc Armand Ruffer and Giulio Bizzozero: the first reports on efferocytosis. J Leukoc Biol. 2013; 93: 39–43.
Google Scholar | Crossref | Medline24. López-Reyes, A, Martinez-Armenta, C, Espinosa-Velázquez, R, et al. NLRP3 Inflammasome: the stormy link between obesity and COVID-19. Front Immunol. 2020; 11: 570251.
Google Scholar | Medline25. Remy, KE, Mazer, M, Striker, DA, et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020;5(17):e140329.
Google Scholar | Crossref | Medline26. Kox, M, Waalders, NJB, Kooistra, EJ, et al. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA 2020; 324: 1565–7.
Google Scholar | Crossref27. Stolarski, AE, Kim, J, Zhang, Q, Remick DG. Cytokine drizzle. The Rationale for abandoning “cytokine storm”. Shock. 2021; 56: 667–672.
Google Scholar | Crossref | Medline28. Xiong, Y, Liu, Y, Cao, L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020; 9: 761–770.
Google Scholar | Crossref | Medline29. Li, Z, Liu, T, Yang, N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med. 2020, 14, 533–541.
Google Scholar | Crossref | Medline30. Jakhmola, S, Indari, O, Chatterjee, S, Jha, HC. SARS-CoV-2, an underestimated pathogen of the nervous system. Comprehensive Clin Med. 2020; 2: 2137–2146.
Google Scholar | Crossref31. de Melo, GD, Lazarini, F, Levallois, S, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021; 13: eabf8396.
Google Scholar | Crossref | Medline32. Zeppa S, Donati, Agostini, D, Piccoli, G, et al. Gut Microbiota Status in COVID-19: An Unrecognized Player? Front Cell Infect Microbiol. 2020; 10: 576551.
Google Scholar33. Kruglikov, IL , Scherer PE Preexisting and inducible endotoxemia as crucial contributors to the severity of COVID-19 outcomes. PLoS Pathog. 2021; 17: e1009306.
Google Scholar | Medline34. Cheung, KS, Hung, IFN, Chan, PPY, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a hong kong cohort: systematic review and meta-analysis. Gastroenterology 2020; 159: 81–95.
Google Scholar | Crossref | Medline35. Metchnikoff, E . Sur la lutte des cellules de l’organisme contre l’invasion des microbes. Ann Inst Pasteur 1887; 1: 321–336.
Google Scholar36. Metchnikoff, E . La lutte pour l’existence entre des diverses parties de l’organisme. Revue scientifique 1892; 50: 321–326.
Google Scholar37. Brandtzaeg, P, Ovstebø, R, Kierulf, P. Compartmentalization of lipopolysaccharide production correlates with clinical presentation in meningococcal disease. J Infect Dis 1992; 166: 650–2.
Google Scholar | Crossref | Medline38. Cavaillon, J-M, Adib-Conquy, M, Cloëz-Tayarani, I, Fitting, C. Immunodepression in sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon: a review. J Endotoxin Res 2001; 7: 85–93.
Google Scholar | SAGE Journals39. Cavaillon, J-M, Annane, D. Compartmentalization of the inflammatory response in sepsis and SIRS. J Endotoxin Res 2006; 12: 151–70.
Google Scholar | SAGE Journals40. Manouélian Y Mécanisme de la destruction des cellules nerveuses. Ann Inst Pasteur 1906; 20: 859-868.
Google Scholar41. Tsiklinsky, P . Sur la flore microbienne thermophile. Ann Inst Pasteur 1903; 17: 217–240.
Google Scholar42. Choukevitch J. Etude de lka flore bactérienne du gros intestine du cheval. Ann Inst Pasteur 1911; 25: 247-276; 345-368.
Google Scholar43. Wang, N, Zhan, Y, Zhu, L, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe 2020; 28: 455–464.e2.
Google Scholar | Crossref | Medline44. Rodrigues, TS, de Sá, KSG, Ishimoto, AY et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021; 218: e20201707.
Google Scholar | Medline45. Karki, R, Sharma, BR, Tuladhar, S, et al. Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 Infection and cytokine shock syndromes. Cell 2021; 184: 149–168.e17.
Google Scholar | Crossref | Medline46. Doherty, GM, Lange, JR, Langstein, HN, et al Evidence for IFN-gamma as a mediator of the lethality of endotoxin and tumor necrosis factor-alpha. J Immunol. 1992; 149: 1666–70.
Google Scholar | Medline47. Tauber, AI . Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol. 2003; 4: 897–901.
Google Scholar | Crossref | Medline48. Pietrobon, AJ, Teixeira, FME, Sato, MN. Immunosenescence and inflammaging: risk factors of severe COVID-19 in older people. Front Immunol. 2020; 11: 579220.
Google Scholar49. Metchnikoff, E, Mesnil, F, Weinberg, M. Etudes biologiques sur la vieillesse. Ann Inst Pasteur 190; 16: 912–917.
Google Scholar50. Luo, XG, Ding, JQ, Chen, SD. Microglia in the aging brain: relevance to neurodegeneration. Mol Neurodegener. 2010; 5: 12
Google Scholar | Crossref | Medline51. Java, A, Apicelli, AJ, Liszewski, MK, et al. The complement system in COVID-19: friend and foe? JCI Insight. 2020; 5: e140711.
Google Scholar | Medline52. Carvelli J, Demaria O, Vély F, et al . Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature. 2020; 588: 146–150.
Google Scholar | Crossref | Medline53. Czermak, BJ, Sarma, V, Pierson, CL, et al. Protective effects of C5a blockade in sepsis. Nat Med. 1999; 5: 788–92.
Google Scholar | Crossref | Medline | ISI54. Holter, JC, Pischke, SE, de Boer, E, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci USA. 2020; 117: 25018–25025.
Google Scholar | Crossref | Medline55. Cavaillon, J-M, Sansonetti, P, Goldman, M. 100th anniversary of Jules Bordet’s Nobel Prize: tribute to a founding father of immunology. Front Immunol. 2019; 10: 2114.
Google Scholar | Crossref | Medline56. Grasselli, G, Tonetti, T, Protti, A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020; 8: 1201–1208.
Google Scholar | Crossref | Medline57. Goshua, G, Pine, AB, Meizlish, ML, Chang, CH et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 2020; 7: e575–e582.
Google Scholar | Crossref | Medline58. Bordet, J, Gengou, O. Recherche sur la coagulation du sang et les serums anticoagulants. Ann Inst Pasteur, 1901; 15: 129–144
Google Scholar59. Sahin, U, Muik, A, Derhovanessian, E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1  T cell responses. Nature. 2020; 586: 594–599.

留言 (0)

沒有登入
gif