Neglected roles of IgG Fc-binding protein secreted from airway mucin-producing cells in protecting against SARS-CoV-2 infection

1. Varga, Z, Flammer, AJ, Steiger, P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395: 1417–1418.
Google Scholar | Crossref | Medline2. Devaux, CA, Lagier, J-C, Didier, R. New insights into the physiopathology of COVID-19: SARS-CoV-2-associated gastrointestinal illness. Front Med (Lausanne) 2021: 8: 640073.
Google Scholar | Crossref | Medline3. Wu, F, Liu, M, Wang, A, et al. Evaluating the association of clinical characteristics with neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai, China. JAMA Intern Med 2020; 180: 1356–1362.
Google Scholar | Crossref | Medline4. Long, QX, Liu, BZ, Deng, HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020; 26:845–848.
Google Scholar | Crossref | Medline5. Long, QX, Tang, XJ, Shi, QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020; 26:1200–1204.
Google Scholar | Crossref | Medline6. Aran, D, Beachler, DC, Lanes, S, et al. Prior presumed coronavirus infection reduces COVID-19 risk: a cohort study. J Infect 2020; 81: 923–930.
Google Scholar | Crossref | Medline7. Chatterjee, M, van Putten, JPM, Strijbis, K. Defensive properties of mucin glycoproteins during respiratory infections. Relevance for SARS-CoV-2. mBio 2020; 11:e02374–20.
Google Scholar | Crossref | Medline8. Kobayashi, K, Blaser, MJ, Brown, WR. Identification of IgG Fc binding site in human intestinal epithelium. J Immunol 1989; 143: 2567–2574.
Google Scholar | Medline9. Kobayashi, K, Hamada, Y, Blaser, MJ, et al. The molecular configuration and ultrastructural locations of an IgG Fc binding site in human colonic epithelium. J Immunol 1991; 146: 68–74.
Google Scholar | Medline | ISI10. Kobayashi, K, Ogata, H, Morikawa, M, et al. Distribution and partial characterisation of IgG Fc binding protein in various mucin producing cells and body fluids. Gut 2002; 51: 169–176.
Google Scholar | Crossref | Medline11. Sariol, A, Perlman, S. Lessons for COVID-19 immunity from other coronavirus infections. Immunity 2020; 53: 248–263.
Google Scholar | Crossref | Medline12. Sagar, M, Reifler, K, Rossi, M, et al. Recent endemic coronavirus infection is associated with less severe COVID-19. J Clin Invest 2021; 131: e143380.
Google Scholar | Crossref | Medline13. Jaimes, JA, André, NM, Chappie, JS, et al. Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. J Mol Biol 2020; 432: 3309–3325.
Google Scholar | Crossref | Medline14. Hicks, J, Klumpp-Thomas, C, Kalish, H, et al. Serologic cross-reactivity of SARS-CoV-2 with endemic and seasonal Betacoronaviruses. J Clin Immunol 2021; 41: 906–913.
Google Scholar | Crossref | Medline15. Huang, Y, Yang, C, Xu, XF, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41: 1141–1149.
Google Scholar | Crossref | Medline16. Suthar, MS, Zimmerman, MG, Kauffman, RC, et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep Med 2020; 1:10004.
Google Scholar17. Braun, J, Loyal, L, Frentsch, M, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020; 587: 270–274.
Google Scholar | Crossref | Medline18. Grifoni, A, Weiskopf, D, Ramirez, SI, et al. Targets of T Cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181:1489–1501.
Google Scholar | Crossref | Medline19. Kreer, C, Zehner, M, Weber, T, et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. Cell 2020; 182: 843–854.
Google Scholar | Crossref | Medline20. Lv, H, Wu, NC, Tsang, OT, et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep 2020; 31: 107725.
Google Scholar | Crossref21. Nguyen-Contant, P, Embong, AK, Kanagaiah, P, et al. S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. mBio 2020; 11: e01991–20.
Google Scholar | Crossref | Medline22. Ng, KW, Faulkner, N, Cornish, GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020; 370: 1339–1343.
Google Scholar | Crossref | Medline23. Kobayashi K, Brown WR. Study of colonic IgG Fc binding site in cultured epithelial cells. Digest Dis Sci 1994; 39: 526–533.
Google Scholar24. Kim YS, Ho SB. Intestinal goblet cells and mucins in human and disease: recent insights and prognosis. Curr Gastroenterol Rep 2010; 12: 319–330.
Google Scholar25. Kouznetsova, I, Gerlach, KL, Zahl, C, et al. Expression analysis of human salivary glands by laser microdissection: differences between submandibular and labial glands. Cell Physiol Biochem 2010; 26: 375–382.
Google Scholar | Crossref | Medline26. Houben, T, Harder, S, Schlüter, H, et al. Different forms of TFF3 in the human saliva: heterodimerization with IgG Fc binding protein (FCGBP). Int J Mol Sci 2019; 20: 5000.
Google Scholar | Crossref27. Kobayashi, K, Yagasaki, M, Harada, N, et al. Detection of Fcgamma binding protein antigen in human sera and its relation with autoimmune diseases. Immunol Lett 2001; 79: 229–235.
Google Scholar | Crossref | Medline28. Harada, N, Iijima, S, Kobayashi, K, et al. Human IgGFc binding protein (FcgammaBP) in colonic epithelial cells exhibits mucin-like structure. J Biol Chem 1997; 272: 15232–15234.
Google Scholar | Crossref | Medline | ISI29. Simister, NE, Mostov, KE. An Fc receptor structurally related to MHC class I antigens. Nature 1989; 337: 184–187.
Google Scholar | Crossref | Medline30. Johansson, MEV, Thomsson, KA, Hansson, GC. Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. J Proteome Res 2009; 8: 3549–3557.
Google Scholar | Crossref | Medline31. Gene ID: 8857. FCGBP: Fc fragment of IgG binding protein [Homo sapiens (human)] , https://www.ncbi.nlm.nih.gov/gene/?term=fcgbp (2021, accessed July 2021).
Google Scholar32. Lang, T, Klasson, S, Larsson, E, et al. Searching the evolutionary origin of epithelial mucus protein components-mucins and FCGBP. Mol Biol Evol 2016; 33: 1921–1936.
Google Scholar | Crossref | Medline33. Okuda, K, Chen, G, Subramani, DB, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am J Respir Crit Care Med 2019; 199: 715–727.
Google Scholar | Crossref | Medline34. Roy, MG, Livraghi-Butrico, A, Fletcher, AA, et al. Muc5b is required for airway defense. Nature 2014; 505: 412–416.
Google Scholar | Crossref | Medline35. Frenkel, ES, Ribbeck, K. Salivary mucins in host defense and disease prevention. J Oral Microbiol 2015; 7: 29759.
Google Scholar | Crossref | Medline36. Mantis, N, Rol, N, Corthésy, B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011; 4: 603–611.
Google Scholar | Crossref | Medline37. Schwartz, JL. Fcgbp. A potential viral trap in RV144. Open AIDS J 2014; 8: 21–24.
Google Scholar | Crossref | Medline38. Wang, YY, Kannan, A, Nunn, K, et al. IgG in cervicovaginal mucus traps HSV and prevents vaginal Herpes infections. Mucosal Immunol 2014; 7: 1036–1044.
Google Scholar | Crossref | Medline39. Boyle, MDP (ed) Bacterial immunoglobulin-binding proteins. 1989, Cambridge, MA: Academic Press, 1989.
Google Scholar40. Labbé, S, Grenier, D. Characterization of the human immunoglobulin G Fc-binding activity in Prevotella intermedia. Infect Immun 1995; 63:2785–2789.
Google Scholar | Crossref | Medline41. Gorman, H, Moreau, F, Kim, A, et al. FCGBP maintains MUC2 mucus structural integrity by stabilizing the mucus layer in response to the colonic pathogen, Entamoeba histolytica. J Can Assoc Gastroenterol 2021; 4: 212–213.
Google Scholar | Crossref42. Radicioni, G, Cao, R, Carpenter, J, et al. The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome. Mucosal Immunol 2016; 9: 1442–1454.
Google Scholar | Crossref | Medline43. Albert, TK, Laubinger, W, Müller, S, et al. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J Proteome Res 2010; 9: 3108–3117.
Google Scholar | Crossref | Medline44. Hoffmann, W. Trefoil factor family (TFF) peptides and their diverse molecular functions in mucus barrier protection and more: changing the paradigm. Int J Mol Sci 2020; 21: 4535.
Google Scholar | Crossref45. Devine, DA, High, AS, Owen, PJ, et al. Trefoil factor expression in normal and diseased salivary glands, Hum Pathol 2000; 31: 500–515.
Google Scholar | Crossref46. Wiede, A, Jagla, W, Welte, T, et al. Localization of TFF3, a new mucus-associated peptide of the human respiratory tract. Am J Respir Crit Care Med 1999; 159: 1330–1335.
Google Scholar | Crossref | Medline47. Braga Emidio, N, Hoffmann, W, Brierley, SM, et al. Trefoil factor family: unresolved questions and clinical perspectives. Trends Biochem Sci 2019; 44: 387–390.
Google Scholar | Crossref | Medline48. Reeves, EP, Ali, T, Leonard, P, et al. Helicobacter pylori lipopolysaccharide interacts with TFF1 in a pH-dependent manner. Gastroenterology 2008; 135: 2043–2054.
Google Scholar | Crossref | Medline49. Li, C, Wang, R, Su, B, et al. Evasion of mucosal defenses during Aeromonas hydrophila infection of channel catfish (Ictalurus punctatus) skin. Dev Comp Immunol 2013; 39: 447–455.
Google Scholar | Crossref | Medline50. Prévost, J, Gasser, R, Beaudoin-Bussières, G, et al. Cross-sectional evaluation of humoral responses against SARS-CoV-2 spike. Cell Rep Med 2020; 1: 100126.
Google Scholar | Crossref | Medline51. Anderson, EM, Goodwin, EC, Verma, A, et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 2021; 184: 1858–1864.e10.
Google Scholar | Crossref | Medline52. Goins, CL, Chappell, CP, Shashidharamurthy, R, et al. Immune complex-mediated enhancement of secondary antibody responses. J Immunol 2010; 184: 6293–6298.
Google Scholar | Crossref | Medline53. Dugas, M, Grote-Westrick, T, Vollenberg, R, et al. Less severe course of COVID-19 is associated with elevated levels of antibodies against seasonal human coronaviruses OC43 and HKU1 (HCoV OC43, HCoV HKU1). Int J Infect Dis 2021; 105: 304–306.
Google Scholar |

留言 (0)

沒有登入
gif