Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography

1. Ljubimov, AV, Saghizadeh, M. Progress in corneal wound healing. Prog Retin Eye Res 2015; 49:17–45
Google Scholar | Crossref | Medline2. Fullwood, NJ. Collagen fibril orientation and corneal curvature. Structure 2004; 12:169–7
Google Scholar | Crossref | Medline3. Wilson, SL, El Haj, AJ, Yang, Y. Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering. J Funct Biomater 2012; 3:642–87
Google Scholar | Crossref | Medline4. Das, M, Menda, SA, Panigrahi, AK, Venkatesh Prajna, N, Yen, M, Tsang, B, Kumar, A, Rose-Nussbaumer, J, Acharya, NR, McCulloch, CE, Lietman, TM. Repeatability and reproducibility of slit lamp, optical coherence tomography, and Scheimpflug measurements of corneal scars. Ophthalmic Epidemiol 2019; 26:251–6
Google Scholar | Crossref | Medline5. Madhusudhana, KC, Hossain, P, Thiagarajan, M, Newsom, RS. Use of anterior segment optical coherence tomography in a penetrating eye injury. Br J Ophthalmol 2007; 91:982–3
Google Scholar | Crossref | Medline6. Rush, SW, Matulich, J, Rush, RB. Long-term outcomes of optical coherence tomography-guided transepithelial phototherapeutic keratectomy for the treatment of anterior corneal scarring. Br J Ophthalmol 2014; 98:1702–6
Google Scholar | Crossref | Medline7. Teng, SW, Tan, HY, Sun, Y, Lin, SJ, Lo, W, Hsueh, CM, Hsiao, CH, Lin, WC, Huang, SC, Dong, CY. Multiphoton fluorescence and second-harmonic-generation microscopy for imaging structural alterations in corneal scar tissue in penetrating full-thickness wound. Arch Ophthalmol 2007; 125:977–8
Google Scholar | Crossref | Medline8. Ke, L, Wu, QY, Zhang, N, Liu, HW, Teo, EP, Mehta, JS, Liu, YC. Ex vivo sensing and imaging of corneal scar tissue using terahertz time domain spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2021; 255:119667
Google Scholar | Crossref | Medline9. Sarvazyan, A, J, Hall, T, W, Urban, M, Fatemi, MR, Aglyamov, SS, Garra, B. An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev 2011; 7:255–82
Google Scholar | Crossref | Medline | ISI10. Ophir, J, Cespedes, I, Ponnekanti, H, Yazdi, Y, Li, X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13:111–34
Google Scholar | SAGE Journals | ISI11. Garra, BS. Elastography: history, principles, and technique comparison. Abdom Imaging 2015; 40:680–97
Google Scholar | Crossref | Medline12. Cochlin, DL, Ganatra, RH, Griffiths, DF. Elastography in the detection of prostatic cancer. Clin Radiol 2002; 57:1014–20
Google Scholar | Crossref | Medline | ISI13. Gennisson, JL, Deffieux, T, Fink, M, Tanter, M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging 2013; 94:487–95
Google Scholar | Crossref | Medline14. Zaleska-DorobiszA, U, Kaczorowski, K, Pawluś, A, Puchalska, A, Inglot, M. Ultrasound elastography – review of techniques and its clinical applications. Brain 2013; 6:10–4
Google Scholar15. Glaser, KJ, Manduca, A, Ehman, RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012; 36:757–74
Google Scholar | Crossref | Medline16. Uffmann, K, Maderwald, S, Ajaj, W, Galban, CG, Mateiescu, S, Quick, HH, Ladd, ME. In vivo elasticity measurements of extremity skeletal muscle with MR elastography. NMR Biomed 2004; 17:181–90
Google Scholar | Crossref | Medline | ISI17. Huang, D, Swanson, EA, Lin, CP, Schuman, JS, Stinson, WG, Chang, W, Hee, MR, Flotte, T, Gregory, K, Puliafito, CA. Optical coherence tomography. Science 1991; 254:1178–81
Google Scholar | Crossref | Medline | ISI18. Kennedy, BF, Kennedy, KM, Sampson, DD. A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J Select Topics Quantum Electron 2013; 20:272–88
Google Scholar | Crossref19. Adie, SG, Liang, X, Kennedy, BF, John, R, Sampson, DD, Boppart, SA. Spectroscopic optical coherence elastography. Opt Express 2010; 18:25519–34
Google Scholar | Crossref | Medline20. Kennedy, BF, McLaughlin, RA, Kennedy, KM, Chin, L, Curatolo, A, Tien, A, Latham, B, Saunders, CM, Sampson, DD. Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomed Opt Express 2014; 5:2113–24
Google Scholar | Crossref | Medline21. Jin, Z, Khazaeinezhad, R, Zhu, J, Yu, J, Qu, Y, He, Y, Li, Y, Alvarez-Arenas, TE, Lu, F, Chen, Z. In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography. Biomed Opt Express 2019; 10:6272–85
Google Scholar | Crossref | Medline22. Zhu, Y, Zhang, Y, Shi, G, Xue, Q, Han, X, Ai, S, Shi, J, Xie, C, He, X. Quantification of iris elasticity using acoustic radiation force optical coherence elastography. Appl Opt 2020; 59:10739–45
Google Scholar | Crossref | Medline23. He, Y, Qu, Y, Zhu, J, Zhang, Y, Saidi, A, Ma, T, Zhou, Q, Chen, Z. Confocal shear wave acoustic radiation force optical coherence elastography for imaging and quantification of the in vivo posterior eye. IEEE J Select Topics Quantum Electron 2018; 25:1–7
Google Scholar | Crossref24. Li, Y, Zhu, J, Chen, JJ, Yu, J, Jin, Z, Miao, Y, Browne, AW, Zhou, Q, Chen, Z. Simultaneously imaging and quantifying in vivo mechanical properties of crystalline lens and cornea using optical coherence elastography with acoustic radiation force excitation. APL Photonics 2019; 4:106104
Google Scholar | Crossref | Medline25. Ford, MR, Dupps, WJ, Rollins, AM, Roy, AS, Hu, Z. Method for optical coherence elastography of the cornea. J Biomed Opt 2011; 16:016005
Google Scholar | Crossref | Medline26. De Stefano, VS, Ford, MR, Seven, I, Hughes, B, Dupps, WJ. In-vivo assessment of corneal biomechanics using optical coherence elastography. Invest Ophthalmol Vis Sci 2017; 58:4325
Google Scholar27. Kling, S, Marcos, S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci 2013; 54:5078–85
Google Scholar | Crossref | Medline28. Chen, S, Jin, Z, Zheng, G, Ye, S, Wang, Y, Wang, W, Wang, Y, Zhu, D, Shen, M, Lu, F. Diurnal variation of corneal elasticity in healthy young human using air‐puff optical coherence elastography. J Biomed Opt 2021; 14:e202000440
Google Scholar29. Zhu, J, He, X, Chen, Z. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissue. Appl Spectrosc Rev 2019; 54:457–81
Google Scholar | Crossref | Medline30. Pitre, JJ, Kirby, MA, Li, DS, Shen, TT, Wang, RK, O’Donnell, M, Pelivanov, I. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE. Sci Rep 2020; 10:1–4
Google Scholar | Crossref | Medline31. Mulligan, JA, Untracht, GR, Chandrasekaran, SN, Brown, CN, Adie, SG. Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography. IEEE J Select Topics Quantum Electron 2015; 22:246–65
Google Scholar | Crossref32. Li, Y, Moon, S, Chen, JJ, Zhu, Z, Chen, Z. Ultrahigh-sensitive optical coherence elastography. Light Sci Appl 2020; 9:1–0
Google Scholar | Crossref | Medline33. A. N. S. I. ANSI, Z136. 1-2014 Laser Institute of America. Orlando. Washington: ANSI, 2014.
Google Scholar34. Zhao, Y, Chen, Z, Saxer, C, Xiang, S, de Boer, JF, Nelson, JS. Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 2000; 25:114–6
Google Scholar | Crossref | Medline | ISI35. DelMonte, DW, Kim, T. Anatomy and physiology of the cornea. J Cataract Refract Surg 2011; 37:588–98
Google Scholar | Crossref | Medline36. Lamb, H. On waves in an elastic plate. Proc R Soc Lond A Math Phys Sci 1917; 93:114–28
Google Scholar | Crossref37. Kampmeier, J, Radt, B, Birngruber, R, Brinkmann, R. Thermal and biomechanical parameters of porcine cornea. Cornea 2000; 19:355–63
Google Scholar | Crossref | Medline38. Whitcher, JP, Srinivasan, M, Upadhyay, MP. Corneal blindness: a global perspective. Bull World Health Organ 2001; 79:214–21
Google Scholar | Medline | ISI39. Garg, P, Krishna, PV, Stratis, AK, Gopinathan, U. The value of corneal transplantation in reducing blindness. Eye (Lond) 2005; 19:1106–14
Google Scholar | Crossref | Medline | ISI40. Yorston, DA, Foster, AL. Cutaneous anthrax leading to corneal scarring from cicatricial ectropion. Br J Ophthalmol 1989; 73:809–11
Google Scholar | Crossref | Medline | ISI41. Han, Z, Li, J, Singh, M, Vantipalli, S, Aglyamov, SR, Wu, C, Liu, CH, Raghunathan, R, Twa, MD, Larin, KV. Analysis of the effect of the fluid-structure interface on elastic wave velocity in cornea-like structures by OCE and FEM. Laser Phys Lett 2016; 13:035602
Google Scholar | Crossref42. Cartwright, NE, Tyrer, JR, Marshall, J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011; 52:4324–9
Google Scholar | Crossref | Medline43. Tuft, SJ, Gartry, DS, Rawe, IM, Meek, KM. Photorefractive keratectomy: implications of corneal wound healing. Br J Ophthalmol 1993; 77:243–7
Google Scholar | Crossref | Medline | ISI44. Aumann, S, Donner, S, Fischer, J, Müller, F. Optical coherence tomography (OCT): principle and technical realization. High Resol Imaging Microsc Ophthalmol 2019;59–85
Google Scholar | Crossref

留言 (0)

沒有登入
gif