1. Pinzani, M, Luong, TV. Pathogenesis of biliary fibrosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1279–83
Google Scholar |
Crossref |
Medline2. Lakshminarayanan, B, Davenport, M. Biliary atresia: a comprehensive review. J Autoimmun 2016; 73:1–9
Google Scholar |
Crossref |
Medline3. Ramachandran, P, Iredale, JP. Liver fibrosis: a bidirectional model of fibrogenesis and resolution. Qjm 2012; 105:813–7
Google Scholar |
Crossref |
Medline4. Kitade, M, Factor, VM, Andersen, JB, Tomokuni, A, Kaji, K, Akita, H, Holczbauer, A, Seo, D, Marquardt, JU, Conner, EA, Lee, SB, Lee, YH, Thorgeirsson, SS. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev 2013; 27:1706–17
Google Scholar |
Crossref |
Medline5. Schaub, JR, Huppert, KA, Kurial, SNT, Hsu, BY, Cast, AE, Donnelly, B, Karns, RA, Chen, F, Rezvani, M, Luu, HY, Mattis, AN, Rougemont, AL, Rosenthal, P, Huppert, SS, Willenbring, H. De novo formation of the biliary system by TGFbeta-mediated hepatocyte transdifferentiation. Nature 2018; 557:247–51
Google Scholar |
Crossref |
Medline6. Okabe, H, Yang, J, Sylakowski, K, Yovchev, M, Miyagawa, Y, Nagarajan, S, Chikina, M, Thompson, M, Oertel, M, Baba, H, Monga, SP, Nejak-Bowen, KN. Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. Hepatology 2016; 64:1652–66
Google Scholar |
Crossref |
Medline7. Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127:469–80
Google Scholar |
Crossref |
Medline |
ISI8. Kimelman, D, Xu, W. Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2006; 25:7482–91
Google Scholar |
Crossref |
Medline |
ISI9. Wang, Y. Wnt/planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther 2009; 8:2103–9
Google Scholar |
Crossref |
Medline |
ISI10. Habas, R, Dawid, IB, He, X. Coactivation of Rac and Rho by Wnt/frizzled signaling is required for vertebrate gastrulation. Genes Dev 2003; 17:295–309
Google Scholar |
Crossref |
Medline |
ISI11. Agius, E, Oelgeschlager, M, Wessely, O, Kemp, C, De Robertis, EM. Endodermal nodal-related signals and mesoderm induction in xenopus. Development 2000; 127:1173–83
Google Scholar |
Crossref |
Medline12. Tian, L, Ye, Z, Kafka, K, Stewart, D, Anders, R, Schwarz, KB, Jang, YY. Biliary atresia relevant human induced pluripotent stem cells recapitulate key disease features in a dish. J Pediatr Gastroenterol Nutr 2019; 68:56–63
Google Scholar |
Crossref |
Medline13. Wang, J, Sinha, T, Wynshaw-Boris, A. Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb Perspect Biol 2012; 4:a007963
Google Scholar |
Crossref |
Medline |
ISI14. Takada, S, Stark, KL, Shea, MJ, Vassileva, G, McMahon, JA, McMahon, AP. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994; 8:174–89
Google Scholar |
Crossref |
Medline15. Yamaguchi, TP, Bradley, A, McMahon, AP, Jones, S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999; 126:1211–23
Google Scholar |
Crossref |
Medline |
ISI16. Liu, P, Wakamiya, M, Shea, MJ, Albrecht, U, Behringer, RR, Bradley, A. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 1999; 22:361–5
Google Scholar |
Crossref |
Medline |
ISI17. Galceran, J, Farinas, I, Depew, MJ, Clevers, H, Grosschedl, R. Wnt3a-/–like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Genes Dev 1999; 13:709–17
Google Scholar |
Crossref |
Medline |
ISI18. Haegel, H, Larue, L, Ohsugi, M, Fedorov, L, Herrenknecht, K, Kemler, R. Lack of beta-catenin affects mouse development at gastrulation. Development 1995; 121:3529–37
Google Scholar |
Crossref |
Medline19. Yoney, A, Etoc, F, Ruzo, A, Carroll, T, Metzger, JJ, Martyn, I, Li, S, Kirst, C, Siggia, ED, Brivanlou, AH. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. Elife 2018; 7:e38279
Google Scholar |
Crossref |
Medline20. Choi, SM, Kim, Y, Shim, JS, Park, JT, Wang, RH, Leach, SD, Liu, JO, Deng, C, Ye, Z, Jang, YY. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 2013; 57:2458–68
Google Scholar |
Crossref |
Medline |
ISI21. Engert, S, Burtscher, I, Liao, WP, Dulev, S, Schotta, G, Lickert, H. Wnt/beta-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development 2013; 140:3128–38
Google Scholar |
Crossref |
Medline22. McLin, VA, Rankin, SA, Zorn, AM. Repression of wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007; 134:2207–17
Google Scholar |
Crossref |
Medline |
ISI23. Dessimoz, J, Opoka, R, Kordich, JJ, Grapin-Botton, A, Wells, JM. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 2006; 123:42–55
Google Scholar |
Crossref |
Medline |
ISI24. Li, Y, Rankin, SA, Sinner, D, Kenny, AP, Krieg, PA, Zorn, AM. Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. Genes Dev 2008; 22:3050–63
Google Scholar |
Crossref |
Medline25. Touboul, T, Chen, S, To, CC, Mora-Castilla, S, Sabatini, K, Tukey, RH, Laurent, LC. Stage-specific regulation of the WNT/beta-catenin pathway enhances differentiation of hESCs into hepatocytes. J Hepatol 2016; 64:1315–26
Google Scholar |
Crossref |
Medline26. Lade, AG, Monga, SP. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2011; 240:486–500
Google Scholar |
Crossref |
Medline |
ISI27. Shin, D, Lee, Y, Poss, KD, Stainier, DY. Restriction of hepatic competence by fgf signaling. Development 2011; 138:1339–48
Google Scholar |
Crossref |
Medline28. Goss, AM, Tian, Y, Tsukiyama, T, Cohen, ED, Zhou, D, Lu, MM, Yamaguchi, TP, Morrisey, EE. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 2009; 17:290–8
Google Scholar |
Crossref |
Medline |
ISI29. Matsumoto, K, Miki, R, Nakayama, M, Tatsumi, N, Yokouchi, Y. Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium. Dev Biol 2008; 319:234–47
Google Scholar |
Crossref |
Medline |
ISI30. Shin, D, Monga, SP. Cellular and molecular basis of liver development. Compr Physiol 2013; 3:799–815
Google Scholar |
Crossref |
Medline31. Wang, W, Feng, Y, Aimaiti, Y, Jin, X, Mao, X, Li, D. TGFbeta signaling controls intrahepatic bile duct development may through regulating the Jagged1-Notch-Sox9 signaling axis. J Cell Physiol 2018; 233:5780–91
Google Scholar |
Crossref |
Medline32. Hofmann, JJ, Zovein, AC, Koh, H, Radtke, F, Weinmaster, G, Iruela-Arispe, ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into alagille syndrome. Development 2010; 137:4061–72
Google Scholar |
Crossref |
Medline |
ISI33. Falix, FA, Weeda, VB, Labruyere, WT, Poncy, A, de Waart, DR, Hakvoort, TB, Lemaigre, F, Gaemers, IC, Aronson, DC, Lamers, WH. Hepatic Notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning. Dev Biol 2014; 396:201–13
Google Scholar |
Crossref |
Medline34. Hussain, SZ, Sneddon, T, Tan, X, Micsenyi, A, Michalopoulos, GK, Monga, SP. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res 2004; 292:157–69
Google Scholar |
Crossref |
Medline35. Decaens, T, Godard, C, de Reynies, A, Rickman, DS, Tronche, F, Couty, JP, Perret, C, Colnot, S. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 2008; 47:247–58
Google Scholar |
Crossref |
Medline36. Tan, X, Yuan, Y, Zeng, G, Apte, U, Thompson, MD, Cieply, B, Stolz, DB, Michalopoulos, GK, Kaestner, KH, Monga, SP. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 2008; 47:1667–79
Google Scholar |
Crossref |
Medline37. Cordi, S, Godard, C, Saandi, T, Jacquemin, P, Monga, SP, Colnot, S, Lemaigre, FP. Role of beta-catenin in development of bile ducts. Differentiation 2016; 91:42–9
Google Scholar |
Crossref |
Medline38. Deng, X, Zhang, X, Li, W, Feng, RX, Li, L, Yi, GR, Zhang, XN, Yin, C, Yu, HY, Zhang, JP, Lu, B, Hui, L, Xie, WF. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 2018; 23:114–22 e3
Google Scholar |
Crossref |
Medline39. Raven, A, Lu, WY, Man, TY, Ferreira-Gonzalez, S, O'Duibhir, E, Dwyer, BJ, Thomson, JP, Meehan, RR, Bogorad, R, Koteliansky, V, Kotelevtsev, Y, Ffrench-Constant, C, Boulter, L, Forbes, SJ. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 2017; 547:350–4
Google Scholar |
Crossref |
Medline40. Kordes, C, Haussinger, D. Hepatic stem cell niches. J Clin Invest 2013; 123:1874–80
Google Scholar |
Crossref |
Medline41. Hu, M, Kurobe, M, Jeong, YJ, Fuerer, C, Ghole, S, Nusse, R, Sylvester, KG. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology 2007; 133:1579–91
Google Scholar |
Crossref |
Medline42. Huch, M, Dorrell, C, Boj, SF, van Es, JH, Li, VS, van de Wetering, M, Sato, T, Hamer, K, Sasaki, N, Finegold, MJ, Haft, A, Vries, RG, Grompe, M, Clevers, H. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013; 494:247–50
Google Scholar |
Crossref |
Medline |
ISI43. Boulter, L, Govaere, O, Bird, TG, Radulescu, S, Ramachandran, P, Pellicoro, A, Ridgway, RA, Seo, SS, Spee, B, Van Rooijen, N, Sansom, OJ, Iredale, JP, Lowell, S, Roskams, T, Forbes, SJ. Macrophage-derived Wnt opposes notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 2012; 18:572–9
Google Scholar |
Crossref |
Medline |
ISI44. Michalopoulos, GK, Khan, Z. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 2015; 149:876–82
Google Scholar |
Crossref |
Medline |
ISI45. Tarlow, BD, Pelz, C, Naugler, WE, Wakefield, L, Wilson, EM, Finegold, MJ, Grompe, M. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 2014; 15:605–18
Google Scholar
留言 (0)