Carbon “quantum” dots for bioapplications

1. Zhou, J, Yang, Y, Zhang, C. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 2015; 115:11669–717
Google Scholar | Crossref | Medline2. Panwar, N, Soehartono, A, Chan, K, Zeng, S, Xu, G, Qu, J, Coquet, P, Yong, K-T, Chen, X. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev 2019; 119:9559–656
Google Scholar | Crossref | Medline3. Resch-Genger, U, Grabolle, M, Cavaliere-Jaricot, S, Nitschke, R, Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008; 5:763–75
Google Scholar | Crossref | Medline | ISI4. Kairdolf, B, Smith, A, Stokes, T, Wang, M, Young, A, Nie, S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto Calif) 2013; 6:143–62
Google Scholar | Crossref | Medline5. Sun, Y-P, Zhou, B, Lin, Y, Wang, W, Fernando, K, Pathak, P, Meziani, M, Harruff, B, Wang, X, Wang, H, Luo, P, Yang, H, Kose, M, Chen, B, Veca, L, Xie, S-Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 2006; 128:7756–7
Google Scholar | Crossref | Medline6. Sun, Y-P. Fluorescent carbon nanoparticles. US Patent #7,829,772, 2010.
Google Scholar7. Sun, Y-P. Carbon dots – exploring carbon at zero-dimension. Berlin: Springer International Publishing, 2020.
Google Scholar | Crossref8. Luo, P, Sahu, S, Yang, S-T, Sonkar, S, Wang, J, Wang, H, LeCroy, G, Cao, L, Sun, Y-P. Carbon “quantum” dots for optical bioimaging. J Mater Chem B 2013; 1:2116–27
Google Scholar | Crossref | Medline9. Lim, S, Shen, W, Gao, Z. Carbon quantum dots and their applications. Chem Soc Rev 2015; 44:362–81
Google Scholar | Crossref | Medline10. LeCroy, G, Yang, S-T, Yang, F, Liu, Y, Fernando, K, Bunker, C, Hu, Y, Luo, P, Sun, Y-P. Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 2016; 320-321:66–81
Google Scholar | Crossref11. Namdari, P, Negahdari, B, Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 2017; 87:209–22
Google Scholar | Crossref | Medline12. Du, J, Xu, N, Fan, J, Sun, W, Peng, X. Carbon dots for in vivo bioimaging and theranostics. Small 2019; 15:1805087
Google Scholar | Crossref13. Perni, S, Prokopovich, P, Pratten, J, Parkinc, I, Wilson, M. Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci 2011; 10:712–20
Google Scholar | Crossref | Medline14. Carp, O, Huisman, C, Reller, A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 2004; 32:33–177
Google Scholar | Crossref | ISI15. Yemmireddy, V, Farrell, G, Hung, Y. Development of titanium dioxide (TiO2) nanocoatings on food contact surfaces and method to evaluate their durability and photocatalytic bactericidal property. J Food Sci 2015; 80:N1903–11
Google Scholar | Crossref | Medline16. Courtney, C, Goodman, S, McDaniel, J, Madinger, N, Chatterjee, A, Nagpal, P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat Mater 2016; 15:529–34
Google Scholar | Crossref | Medline17. Meziani, M, Dong, X, Zhu, L, Jones, L, LeCroy, G, Yang, F, Wang, S, Wang, P, Zhao, Y, Yang, L, Tripp, R, Sun, Y-P. Visible-light-activated bactericidal functions of carbon “quantum” dots. ACS Appl Mater Interfaces 2016; 8:10761–6
Google Scholar | Crossref | Medline18. Dong, X, Liang, W, Meziani, M, Sun, Y-P, Yang, L. Carbon dots as potent antimicrobial agents. Theranostics 2020; 10:671–86
Google Scholar | Crossref | Medline19. Cao, L, Meziani, M, Sahu, S, Sun, Y-P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 2013; 46:171–80
Google Scholar | Crossref | Medline20. Cao, L, Fernando, K, Liang, W, Seilkop, A, Veca, L, Sun, Y-P, Bunker, C. Carbon dots for energy conversion applications. J Appl Phys 2019; 125:220903
Google Scholar | Crossref21. Riggs, J, Guo, Z, Carroll, D, Sun, Y-P. Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 2000; 122:5879–80
Google Scholar | Crossref22. Wang, X, Cao, L, Yang, S-T, Lu, F, Meziani, M, Tian, L, Sun, K, Bloodgood, M, Sun, Y-P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed Engl 2010; 49:5310–4
Google Scholar | Crossref | Medline23. Anilkumar, P, Wang, X, Cao, L, Sahu, S, Liu, J-H, Wang, P, Korch, K, Tackett, K, Parenzan, A, Sun, Y-P. Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 2011; 3:2023–7
Google Scholar | Crossref | Medline24. LeCroy, G, Sonkar, S, Yang, F, Veca, L, Wang, P, Tackett, K, Yu, J-J, Vasile, E, Qian, H, Liu, Y, Luo, P, Sun, Y-P. Toward structurally defined carbon dots as ultra-compact fluorescent probes. ACS Nano 2014; 8:4522–9
Google Scholar | Crossref | Medline25. Baker, M. Nanotechnology imaging probes: smaller and more stable. Nat Methods 2010; 7:957–62
Google Scholar | Crossref | ISI26. Hou, X, Hu, Y, Wang, P, Yang, L, Al Awak, M, Tang, Y, Twara, F, Qian, H, Sun, Y-P. Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon N Y 2017; 122:389–94
Google Scholar | Crossref | Medline27. Xiong, Y, Schneider, J, Ushakova, E, Rogach, A. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today 2018; 23:124–39
Google Scholar | Crossref28. Khan, S, Sharma, A, Ghoshal, S, Jain, S, Hazra, M, Nandi, C. Small molecular organic nanocrystals resemble carbon nanodots in terms of their properties. Chem Sci 2018; 9:175–80
Google Scholar | Crossref | Medline29. Hinterberger, V, Damm, C, Haines, P, Guldi, D, Peukert, W. Purification and structural elucidation of carbon dots by column chromatography. Nanoscale 2019; 11:8464–74
Google Scholar | Crossref | Medline30. Liang, W, Ge, L, Hou, X, Ren, X, Yang, L, Bunker, C, Overton, C, Wang, P, Sun, Y-P. Evaluation of commercial “carbon quantum dots” sample on origins of red absorption and emission features. C – J Carbon Res 2019; 5:70
Google Scholar | Crossref31. Liang, W, Bunker, C, Sun, Y-P. Carbon dots: zero-dimensional carbon allotrope with unique photoinduced redox characteristics. ACS Omega 2020; 5:965–71
Google Scholar | Crossref | Medline32. Wang, P, Meziani, M, Fu, Y, Bunker, C, Hou, X, Yang, L, Msellek, H, Zaharias, M, Darby, J, Sun, Y-P. Carbon dots versus nano-carbon/organic hybrids – dramatically different behaviors in fluorescence sensing of metal cations with structural and mechanistic implications. Nanoscale Adv 2021; 3:2316–24
Google Scholar | Crossref33. Pan, L, Sun, S, Zhang, A, Jiang, K, Zhang, L, Dong, C, Huang, Q, Wu, A, Lin, H. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 2015; 27:7782–7
Google Scholar | Crossref | Medline34. Liang, W, Wang, P, Meziani, M, Ge, L, Yang, L, Patel, A, Morgan, S, Sun, Y-P. On the myth of “red/near-IR carbon quantum dots” from thermal processing of specific colorless organic precursors. Nanoscale Adv 2021; 3:4186–95
Google Scholar | Crossref35. Liang, W, Wang, P, Yang, L, Overton, C, Hewitt, B, Sun, Y-P. Chemical reactions in thermal carbonization processing of citric acid–urea mixtures. General Chem 2021; 7:210011
Google Scholar | Crossref36. Yang, S-T, Wang, X, Wang, H, Lu, F, Luo, P, Cao, L, Meziani, M, Liu, J-H, Liu, Y, Chen, M, Huang, Y, Sun, Y-P. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C Nanomater Interfaces 2009; 113:18110–4
Google Scholar | Crossref | Medline37. Wang, Y, Anilkumar, P, Cao, L, Liu, J-H, Luo, P, Tackett, K, Sahu, S, Wang, P, Wang, X, Sun, Y-P. Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med (Maywood) 2011; 236:1231–8
Google Scholar | SAGE Journals | ISI38. Liu, J-H, Wang, Y, Yan, G-H, Yang, F, Gao, H, Huang, Y, Wang, H, Wang, P, Yang, L, Tang, Y, Teisl, L, Sun, Y-P. Systematic toxicity evaluations of high-performance carbon "quantum" dots. J Nanosci Nanotechnol 2019; 19:2130–7
Google Scholar | Crossref | Medline39. Cao, L, Wang, X, Meziani, M, Lu, F, Wang, H, Luo, P, Lin, Y, Harruff, B, Veca, L, Murray, D, Xie, S-Y, Sun, Y-P. Carbon dots for multiphoton bioimaging. J Am Chem Soc 2007; 129:11318–9
Google Scholar | Crossref | Medline40. Yi, S, Deng, S, Guo, X, Pang, C, Zeng, J, Ji, S, Liang, H, Shen, X-C, Jiang, B-P. Red emissive two-photon carbon dots: photodynamic therapy in combination with real-time dynamic monitoring for the nucleolus. Carbon 2021; 182:155–66
Google Scholar | Crossref41. Liu, J-H, Cao, L, LeCroy, G, Wang, P, Meziani, M, Dong, Y, Liu, Y, Luo, P, Sun, Y-P. Fluorescence Labeling of Cells with Carbon “Quantum” Dots. Acs Appl Mater Interfaces 2015; 7:19439–45
Google Scholar | Crossref | Medline42. Leménager, G, De Luca, E, Sun, Y-P, Pompa, P. Super-resolution fluorescence imaging of biocompatible carbon dots. Nanoscale 2014; 6:8617–23
Google Scholar | Crossref | Medline43. Yang, L, Jiang, W, Qiu, L, Jiang, X, Zuo, D, Wang, D, Yang, L. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 2015; 7:6104–13
Google Scholar | Crossref | Medline44. Yang, S-T, Cao, L, Luo, P, Lu, F, Wang, X, Wang, H, Meziani, M, Liu, Y, Qi, G, Sun, Y-P. Carbon dots for optical imaging in vivo. J Am Chem Soc 2009; 131:11308–9
Google Scholar | Crossref | Medline45. Cao, L, Yang, S-T, Wang, X, Luo, P, Liu, J-H, Sahu, S, Liu, Y, Sun, Y-P. Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics 2012; 2:295–301
Google Scholar | Crossref | Medline46. Liang, Y, Zhang, T, Tang, M. Toxicity of quantum dots on target organs and immune system. J Appl Toxicol 2021;1–24
Google Scholar47. Huang, X, Zhang, F, Zhu, L, Choi, K, Guo, N, Guo, J, Tackett, K, Anilkumar, P, Liu, G, Quan, Q, Choi, H, Niu, G, Sun, Y-P, Lee, S, Chen, X. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013; 7:5684–93
Google Scholar | Crossref | Medline48. Huang, P, Lin, J, Wang, X, Wang, Z, Zhang, C, He, M, Wang, K, Chen, F, Li, Z, Shen, G, Cui, D, Chen, X. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater 2012; 24:5104–10
Google Scholar | Crossref | Medline49. LeCroy, G, Messina, F, Sciortino, A, Bunker, C, Wang, P, Fernando, K, Sun, Y-P. Characteristic excitation wavelength dependence of fluorescence emissions in carbon “quantum” dots. J Phys Chem C 2017; 121:28180–6
Google Scholar | Crossref50. Sun, Y-P, Wang, P, Lu, Z, Yang, F, Meziani, M, LeCroy, G, Liu, Y, Qian, H. Host-guest carbon dots for enhanced optical properties and beyond. Sci Rep 2015; 5:12354
Google Scholar | Crossref | Medline51. Wang, P, Liu, J-H, Gao, H, Hu, Y, Hou, X, LeCroy, G, Liang, W, Chen, J, Bunker, C, Liu, Y, Sun, Y-P. Host-guest carbon dots as high-performance fluoresce

留言 (0)

沒有登入
gif