Resting-state functional MRI signal fluctuation amplitudes are correlated with brain amyloid-β deposition in patients with mild cognitive impairment

1. Matthews, KA, Xu, W, Gaglioti, AH, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimers Dement 2019; 15: 17–24.
Google Scholar | Crossref | Medline2. McKhann, GM, Knopman, DS, Chertkow, H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 263–269.
Google Scholar | Crossref | Medline | ISI3. Querfurth, HW, LaFerla, FM. Alzheimer’s disease. N Engl J Med 2010; 362: 329–344.
Google Scholar | Crossref | Medline | ISI4. Petersen, RC, Lopez, O, Armstrong, MJ, et al. Practice guideline update summary: mild cognitive impairment report of theguideline development, dissemination, and implementation. Neurology 2018; 90: 126–135.
Google Scholar | Crossref | Medline5. Hardy, JA, Higgins, GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256: 184–185.
Google Scholar | Crossref | Medline | ISI6. De la Torre, JC, Mussivand, T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol Res 1993; 15: 146–153.
Google Scholar | Crossref | Medline | ISI7. de la Torre, J. The vascular hypothesis of Alzheimer’s disease: a key to preclinical prediction of dementia using neuroimaging. J Alzheimers Dis 2018; 63: 35–52.
Google Scholar | Crossref | Medline8. Iadecola, C, Duering, M, Hachinski, V, et al. Vascular cognitive impairment and dementia: JACC scientific expert panel. J Am Coll Cardiol 2019; 73: 3326–3344.
Google Scholar | Crossref | Medline9. Gaugler, J, James, B, Johnson, T, et al. Alzheimer’s disease facts and figures. Alzheimer’s Dement 2016 2016; 12: 459–509.
Google Scholar | Crossref | Medline10. Jack, CR, Bennett, DA, Blennow, K, Contributors et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14: 535–562.
Google Scholar | Crossref | Medline11. Pasha, EP, Rutjes, E, Tomoto, T, et al. Carotid stiffness is associated with brain amyloid-β burden in amnestic mild cognitive impairment. J Alzheimers Dis 2020; 74: 925–935.
Google Scholar | Crossref | Medline12. van Veluw, SJ, Hou, SS, Calvo-Rodriguez, M, et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 2020; 105: 549–561.e5.
Google Scholar | Crossref | Medline13. Nedergaard, M, Goldman, SA. Glymphatic failure as a final common pathway to dementia. Science 2020; 370: 50–56.
Google Scholar | Crossref | Medline14. Iliff, JJ, Wang, M, Zeppenfeld, DM, et al. Cerebral arterial pulsation drives paravascular CSF-Interstitial fluid exchange in the murine brain. J Neurosci 2013; 33: 18190–18199.
Google Scholar | Crossref | Medline | ISI15. Biswal, B, Yetkin, FZ, Haughton, VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537–541.
Google Scholar | Crossref | Medline | ISI16. Fox, MD, Raichle, ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8: 700–711. Epub ahead of print DOI: 10.103/nrn2201.
Google Scholar | Crossref | Medline | ISI17. Heeger, DJ, Ress, D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002; 3: 142–151.
Google Scholar | Crossref | Medline | ISI18. Greicius, MD, Krasnow, B, Reiss, AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003; 100: 253–258.
Google Scholar | Crossref | Medline | ISI19. Greicius, MD, Supekar, K, Menon, V, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009; 19: 72–78.
Google Scholar | Crossref | Medline | ISI20. Johnston, JM, Vaishnavi, SN, Smyth, MD, et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J Neurosci 2008; 28: 6453–6458.
Google Scholar | Crossref | Medline | ISI21. Ebisch, SJH, Gallese, V, Willems, RM, et al. Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 2011; 32: 1013–1028.
Google Scholar | Crossref | Medline | ISI22. Fair, DA, Posner, J, Nagel, BJ, et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 2010; 68: 1084–1091.
Google Scholar | Crossref | Medline | ISI23. Baudrexel, S, Witte, T, Seifried, C, et al. Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in parkinson’s disease. Neuroimage 2011; 55: 1728–1738.
Google Scholar | Crossref | Medline | ISI24. Chen, G, Ward, BD, Xie, C, et al. Classification of AD, MCI, and NC status with large-scale network analysis based on rs-fMRI. Radiology 2011; 259: 213–221.
Google Scholar | Crossref | Medline | ISI25. Park, CH, Chang, WH, Ohn, SH, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 2011; 42: 1357–1362.
Google Scholar | Crossref | Medline | ISI26. Zhu, DC, Majumdar, S, Korolev, IO, et al. Alzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging study. J Alzheimers Dis 2013; 34: 969–984.
Google Scholar | Crossref | Medline | ISI27. Raichle, ME, Mintun, MA. Brain work and brain imaging. Annu Rev Neurosci 2006; 29: 449–476.
Google Scholar | Crossref | Medline | ISI28. Shmueli, K, van Gelderen, P, de Zwart, J, et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 2007; 38: 306–320.
Google Scholar | Crossref | Medline | ISI29. Chang, C, Cunningham, JP, Glover, GH. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage 2009; 44: 857–869.
Google Scholar | Crossref | Medline | ISI30. Chang, C, Glover, GH. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 2010; 50: 81–98.
Google Scholar | Crossref | Medline | ISI31. Chang, C, Metzger, CD, Glover, GH, et al. Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage 2013; 68: 93–104.
Google Scholar | Crossref | Medline32. Tsvetanov, KA, Henson, RNA, Jones, PS, et al. The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology 2020; : 1–20.
Google Scholar33. Rajna, Z, Raitamaa, L, Tuovinen, T, et al. 3D multi-resolution optical flow analysis of cardiovascular pulse propagation in human brain. IEEE Trans Med Imaging 2019; 38: 2028–2036.
Google Scholar | Crossref | Medline34. Rajna, Z, Mattila, H, Huotari, N, et al. Cardiovascular brain impulses in Alzheimer’s disease. Brain 2021; 144: 2214–2226.
Google Scholar | Crossref | Medline35. Zhu, DC, Tarumi, T, Khan, MA, et al. Vascular coupling in resting-state fMRI: evidence from multiple modalities. J Cereb Blood Flow Metab 2015; 35: 1910–1920.
Google Scholar | SAGE Journals | ISI36. Sperling, RA, Laviolette, PS, O'Keefe, K, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 2009; 63: 178–188.
Google Scholar | Crossref | Medline | ISI37. Makedonov, I, Chen, JJ, Masellis, M, et al. Physiological fluctuations in white matter are increased in Alzheimer’s disease and correlate with neuroimaging and cognitive biomarkers. Neurobiol Aging 2016; 37: 12–18.
Google Scholar | Crossref | Medline38. Scarapicchia, V, Mazerolle, EL, Fisk, JD, et al. Resting state BOLD variability in Alzheimer’s disease: a marker of cognitive decline or cerebrovascular status? Front Aging Neurosci 2018; 10: 1–13.
Google Scholar | Crossref | Medline39. Tuovinen, T, Kananen, J, Rajna, Z, et al. The variability of functional MRI brain signal increases in Alzheimer’s disease at cardiorespiratory frequencies. Sci Rep 2020; 10: 1–11.
Google Scholar | Crossref | Medline40. Zang, YF, Yong, H, Chao-Zhe, Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007; 29: 83–91.
Google Scholar | Crossref | Medline | ISI41. Pruim, RHR, Mennes, M, van Rooij, D, et al. Ica-AROMA: a robust Ica-based strategy for removing motion artifact from fMRI data. Neuroimage 2015; 112: 267–277. Epub ahead of print DOI: 10.1016/j.neuroimage.2015.02.064.
Google Scholar | Crossref | Medline | ISI42. Caballero-Gaudes, C, Reynolds, RC. Methods for cleaning the BOLD fMRI signal. Neuroimage 2017; 154: 128–121.
Google Scholar | Crossref | Medline43. Poline, J-B, Brett, M. The general linear model and fMRI: does love last forever? Neuroimage 2012; 62: 871–880.
Google Scholar | Crossref | Medline44. Tarumi, T, Rossetti, H, Thomas, BP, et al. Exercise training in amnestic mild cognitive impairment: a one-year randomized controlled trial. J Alzheimers Dis 2019; 71: 421–433.
Google Scholar | Crossref | Medline45. Petersen, RC, Smith, GE, Waring, SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303–308.
Google Scholar | Crossref | Medline46. Morris, JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology 1993; 43: 2412–2414.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif