1. Matthews, KA, Xu, W, Gaglioti, AH, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimers Dement 2019; 15: 17–24.
Google Scholar |
Crossref |
Medline2. McKhann, GM, Knopman, DS, Chertkow, H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 263–269.
Google Scholar |
Crossref |
Medline |
ISI3. Querfurth, HW, LaFerla, FM. Alzheimer’s disease. N Engl J Med 2010; 362: 329–344.
Google Scholar |
Crossref |
Medline |
ISI4. Petersen, RC, Lopez, O, Armstrong, MJ, et al. Practice guideline update summary: mild cognitive impairment report of theguideline development, dissemination, and implementation. Neurology 2018; 90: 126–135.
Google Scholar |
Crossref |
Medline5. Hardy, JA, Higgins, GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256: 184–185.
Google Scholar |
Crossref |
Medline |
ISI6. De la Torre, JC, Mussivand, T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol Res 1993; 15: 146–153.
Google Scholar |
Crossref |
Medline |
ISI7. de la Torre, J. The vascular hypothesis of Alzheimer’s disease: a key to preclinical prediction of dementia using neuroimaging. J Alzheimers Dis 2018; 63: 35–52.
Google Scholar |
Crossref |
Medline8. Iadecola, C, Duering, M, Hachinski, V, et al. Vascular cognitive impairment and dementia: JACC scientific expert panel. J Am Coll Cardiol 2019; 73: 3326–3344.
Google Scholar |
Crossref |
Medline9. Gaugler, J, James, B, Johnson, T, et al. Alzheimer’s disease facts and figures. Alzheimer’s Dement 2016 2016; 12: 459–509.
Google Scholar |
Crossref |
Medline10. Jack, CR, Bennett, DA, Blennow, K, Contributors et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14: 535–562.
Google Scholar |
Crossref |
Medline11. Pasha, EP, Rutjes, E, Tomoto, T, et al. Carotid stiffness is associated with brain amyloid-β burden in amnestic mild cognitive impairment. J Alzheimers Dis 2020; 74: 925–935.
Google Scholar |
Crossref |
Medline12. van Veluw, SJ, Hou, SS, Calvo-Rodriguez, M, et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 2020; 105: 549–561.e5.
Google Scholar |
Crossref |
Medline13. Nedergaard, M, Goldman, SA. Glymphatic failure as a final common pathway to dementia. Science 2020; 370: 50–56.
Google Scholar |
Crossref |
Medline14. Iliff, JJ, Wang, M, Zeppenfeld, DM, et al. Cerebral arterial pulsation drives paravascular CSF-Interstitial fluid exchange in the murine brain. J Neurosci 2013; 33: 18190–18199.
Google Scholar |
Crossref |
Medline |
ISI15. Biswal, B, Yetkin, FZ, Haughton, VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537–541.
Google Scholar |
Crossref |
Medline |
ISI16. Fox, MD, Raichle, ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8: 700–711. Epub ahead of print DOI: 10.103/nrn2201.
Google Scholar |
Crossref |
Medline |
ISI17. Heeger, DJ, Ress, D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002; 3: 142–151.
Google Scholar |
Crossref |
Medline |
ISI18. Greicius, MD, Krasnow, B, Reiss, AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003; 100: 253–258.
Google Scholar |
Crossref |
Medline |
ISI19. Greicius, MD, Supekar, K, Menon, V, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009; 19: 72–78.
Google Scholar |
Crossref |
Medline |
ISI20. Johnston, JM, Vaishnavi, SN, Smyth, MD, et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J Neurosci 2008; 28: 6453–6458.
Google Scholar |
Crossref |
Medline |
ISI21. Ebisch, SJH, Gallese, V, Willems, RM, et al. Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 2011; 32: 1013–1028.
Google Scholar |
Crossref |
Medline |
ISI22. Fair, DA, Posner, J, Nagel, BJ, et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 2010; 68: 1084–1091.
Google Scholar |
Crossref |
Medline |
ISI23. Baudrexel, S, Witte, T, Seifried, C, et al. Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in parkinson’s disease. Neuroimage 2011; 55: 1728–1738.
Google Scholar |
Crossref |
Medline |
ISI24. Chen, G, Ward, BD, Xie, C, et al. Classification of AD, MCI, and NC status with large-scale network analysis based on rs-fMRI. Radiology 2011; 259: 213–221.
Google Scholar |
Crossref |
Medline |
ISI25. Park, CH, Chang, WH, Ohn, SH, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 2011; 42: 1357–1362.
Google Scholar |
Crossref |
Medline |
ISI26. Zhu, DC, Majumdar, S, Korolev, IO, et al. Alzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging study. J Alzheimers Dis 2013; 34: 969–984.
Google Scholar |
Crossref |
Medline |
ISI27. Raichle, ME, Mintun, MA. Brain work and brain imaging. Annu Rev Neurosci 2006; 29: 449–476.
Google Scholar |
Crossref |
Medline |
ISI28. Shmueli, K, van Gelderen, P, de Zwart, J, et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 2007; 38: 306–320.
Google Scholar |
Crossref |
Medline |
ISI29. Chang, C, Cunningham, JP, Glover, GH. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage 2009; 44: 857–869.
Google Scholar |
Crossref |
Medline |
ISI30. Chang, C, Glover, GH. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 2010; 50: 81–98.
Google Scholar |
Crossref |
Medline |
ISI31. Chang, C, Metzger, CD, Glover, GH, et al. Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage 2013; 68: 93–104.
Google Scholar |
Crossref |
Medline32. Tsvetanov, KA, Henson, RNA, Jones, PS, et al. The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology 2020; : 1–20.
Google Scholar33. Rajna, Z, Raitamaa, L, Tuovinen, T, et al. 3D multi-resolution optical flow analysis of cardiovascular pulse propagation in human brain. IEEE Trans Med Imaging 2019; 38: 2028–2036.
Google Scholar |
Crossref |
Medline34. Rajna, Z, Mattila, H, Huotari, N, et al. Cardiovascular brain impulses in Alzheimer’s disease. Brain 2021; 144: 2214–2226.
Google Scholar |
Crossref |
Medline35. Zhu, DC, Tarumi, T, Khan, MA, et al. Vascular coupling in resting-state fMRI: evidence from multiple modalities. J Cereb Blood Flow Metab 2015; 35: 1910–1920.
Google Scholar |
SAGE Journals |
ISI36. Sperling, RA, Laviolette, PS, O'Keefe, K, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 2009; 63: 178–188.
Google Scholar |
Crossref |
Medline |
ISI37. Makedonov, I, Chen, JJ, Masellis, M, et al. Physiological fluctuations in white matter are increased in Alzheimer’s disease and correlate with neuroimaging and cognitive biomarkers. Neurobiol Aging 2016; 37: 12–18.
Google Scholar |
Crossref |
Medline38. Scarapicchia, V, Mazerolle, EL, Fisk, JD, et al. Resting state BOLD variability in Alzheimer’s disease: a marker of cognitive decline or cerebrovascular status? Front Aging Neurosci 2018; 10: 1–13.
Google Scholar |
Crossref |
Medline39. Tuovinen, T, Kananen, J, Rajna, Z, et al. The variability of functional MRI brain signal increases in Alzheimer’s disease at cardiorespiratory frequencies. Sci Rep 2020; 10: 1–11.
Google Scholar |
Crossref |
Medline40. Zang, YF, Yong, H, Chao-Zhe, Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007; 29: 83–91.
Google Scholar |
Crossref |
Medline |
ISI41. Pruim, RHR, Mennes, M, van Rooij, D, et al. Ica-AROMA: a robust Ica-based strategy for removing motion artifact from fMRI data. Neuroimage 2015; 112: 267–277. Epub ahead of print DOI: 10.1016/j.neuroimage.2015.02.064.
Google Scholar |
Crossref |
Medline |
ISI42. Caballero-Gaudes, C, Reynolds, RC. Methods for cleaning the BOLD fMRI signal. Neuroimage 2017; 154: 128–121.
Google Scholar |
Crossref |
Medline43. Poline, J-B, Brett, M. The general linear model and fMRI: does love last forever? Neuroimage 2012; 62: 871–880.
Google Scholar |
Crossref |
Medline44. Tarumi, T, Rossetti, H, Thomas, BP, et al. Exercise training in amnestic mild cognitive impairment: a one-year randomized controlled trial. J Alzheimers Dis 2019; 71: 421–433.
Google Scholar |
Crossref |
Medline45. Petersen, RC, Smith, GE, Waring, SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303–308.
Google Scholar |
Crossref |
Medline46. Morris, JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology 1993; 43: 2412–2414.
Google Scholar |
Crossref |
Medline |
ISI
留言 (0)