Complement component 3 mutations alter the longitudinal risk of pediatric malaria and severe malarial anemia

1. WHO. World malaria report , https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/9789240015791-eng.pdf?sfvrsn=d7a8ec53_3&download=true (2020, accessed 7 July 2021).
Google Scholar2. Novelli, EM, Hittner, JB, Davenport, GCOuma C, Were T, Obaro S, Kaplan S, Ong‘echa JM, Perkins DJ. Clinical predictors of severe malarial anaemia in a holoendemic Plasmodium falciparum transmission area. Br J Haematol 2010; 149:711–21
Google Scholar | Crossref | Medline3. Achieng, AO, Hengartner, NW, Raballah, ECheng Q, Anyona SB, Lauve N, Guyah B, Foo-Hurwitz I, Ong‘echa JM, McMahon BH, Ouma C, Lambert CG, Perkins DJ. Integrated OMICS platforms identify LAIR1 genetic variants as novel predictors of cross-sectional and longitudinal susceptibility to severe malaria and all-cause mortality in Kenyan children. EBioMedicine 2019; 45: 290–302
Google Scholar | Crossref | Medline4. Anyona, SB, Hengartner, NW, Raballah, EOng‘echa JM, Lauve N, Cheng Q, Fenimore PW, Ouma C, Lambert CG, McMahon BH, Perkins DJ. Cyclooxygenase-2 haplotypes influence the longitudinal risk of malaria and severe malarial anemia in Kenyan children from a holoendemic transmission region. J Hum Genet 2020; 65:99–113
Google Scholar | Crossref | Medline5. Kisia, LE, Kempaiah, P, Anyona, SBMunde EO, Achieng AO, Ong‘echa JM, Lambert CG, Chelimo K, Ouma C, Perkins DJ, Raballah E. Genetic variation in interleukin-7 is associated with a reduced erythropoietic response in Kenyan children infected with Plasmodium falciparum. BMC Med Genet 2019; 20:140
Google Scholar | Crossref | Medline6. Chaplin, H Review: the burgeoning history of the complement system 1888–2005. Immunohematology 2005; 21:85–93
Google Scholar | Crossref | Medline7. Merle, NS, Church, SE, Fremeaux-Bacchi, V, Roumenina, LT. Complement system part I – molecular mechanisms of activation and regulation. Front Immunol 2015; 6:262
Google Scholar | Crossref | Medline8. Ricklin, D, Reis, ES, Mastellos, DC, Gros, P, Lambris, JD. Complement component C3 – the “swiss army knife” of innate immunity and host defense. Immunol Rev 2016; 274:33–58
Google Scholar | Crossref | Medline9. Biryukov, S, Stoute, JA. Complement activation in malaria: friend or foe? Trends Mol Med 2014; 20:293–301
Google Scholar | Crossref | Medline10. Larsen, MD, Quintana, MDP, Ditlev, SBBayarri-Olmos R, Ofori MF, Hviid L, Garred P. Evasion of classical complement pathway activation on Plasmodium falciparum-infected erythrocytes opsonized by PfEMP1-specific IgG. Front Immunol 2018; 9:3088
Google Scholar | Crossref | Medline11. Oyong, DA, Kenangalem, E, Poespoprodjo, JRBeeson JG, Anstey NM, Price RN, Boyle MJ. Loss of complement regulatory proteins on uninfected erythrocytes in vivax and falciparum malaria anemia. JCI Insight 2018; 3:e124854
Google Scholar | Crossref | Medline12. Reiling, L, Boyle, MJ, White, MTWilson DW, Feng G, Weaver R, Opi DH, Persson KEM, Richards JS, Siba PM, Fowkes FJI, Takashima E, Tsuboi T, Mueller I, Beeson JG. Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat Commun 2019; 10:610
Google Scholar | Crossref | Medline13. Stoute, JA, Odindo, AO, Owuor, BO, Mibei, EK, Opollo, MO, Waitumbi, JN. Loss of red blood cell-complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia. J Infect Dis 2003; 187:522–5
Google Scholar | Crossref | Medline14. Waitumbi, JN, Opollo, MO, Muga, RO, Misore, AO, Stoute, JA. Red cell surface changes and erythrophagocytosis in children with severe Plasmodium falciparum anemia. Blood 2000; 95:1481–6
Google Scholar | Crossref | Medline15. Nyakoe, NK, Taylor, RP, Makumi, JN, Waitumbi, JN. Complement consumption in children with Plasmodium falciparum malaria. Malar J 2009; 8:7
Google Scholar | Crossref | Medline16. Odhiambo, CO, Otieno, W, Adhiambo, C, Odera, MM, Stoute, JA. Increased deposition of C3b on red cells with low CR1 and CD55 in a malaria-endemic region of Western Kenya: implications for the development of severe anemia. BMC Med 2008; 6:23
Google Scholar | Crossref | Medline17. Owuor, BO, Odhiambo, CO, Otieno, WO, Adhiambo, C, Makawiti, DW, Stoute, JA. Reduced immune complex binding capacity and increased complement susceptibility of red cells from children with severe malaria-associated anemia. Mol Med 2008; 14:89–97
Google Scholar | Crossref | Medline18. Pawluczkowycz, AW, Lindorfer, MA, Waitumbi, JN, Taylor, RP. Hematin promotes complement alternative pathway-mediated deposition of C3 activation fragments on human erythrocytes: potential implications for the pathogenesis of anemia in malaria. J Immunol 2007; 179:5543–52
Google Scholar | Crossref | Medline19. Das, BK, Panda, AK. MBL-2 polymorphisms (codon 54 and Y-221X) and low MBL levels are associated with susceptibility to multi organ dysfunction in P. falciparum malaria in Odisha. India. Frontiers in Microbiology 2015; 6:778
Google Scholar | Medline20. Holmberg, V, Schuster, F, Dietz, ESagarriga Visconti JC, Anemana SD, Bienzle U, Mockenhaupt FP. Mannose-binding lectin variant associated with severe malaria in young African children. Microbes Infect 2008; 10:342–8
Google Scholar | Crossref | Medline21. Jha, AN, Sundaravadivel, P, Singh, VKPati SS, Patra PK, Kremsner PG, Velavan TP, Singh L, Thangaraj K. MBL2 variations and malaria susceptibility in Indian populations. Infect Immun 2014; 82:52–61
Google Scholar | Crossref | Medline22. Luty, AJ, Kun, JF, Kremsner, PG. Mannose-binding lectin plasma levels and gene polymorphisms in Plasmodium falciparum malaria. J Infect Dis 1998; 178:1221–4
Google Scholar | Crossref | Medline23. Zarkadis, IK, Mastellos, D, Lambris, JD. Phylogenetic aspects of the complement system. Dev Comp Immunol 2001; 25:745–62
Google Scholar | Crossref | Medline24. Heurich, M, Martinez-Barricarte, R, Francis, NJRoberts DL, Rodriguez de Cordoba S, Morgan BP, Harris CL. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci U S A 2011; 108:8761–6
Google Scholar | Crossref | Medline25. Zhang, J, Li, S, Hu, S, Yu, J, Xiang, Y. Association between genetic variation of complement. C3 and the susceptibility to advanced age-related macular degeneration: a Meta-analysis. BMC Ophthalmol 2018; 18:274
Google Scholar | Crossref | Medline26. Roostaei, T, Sadaghiani, S, Mashhadi, RFalahatian M, Mohamadi E, Javadian N, Nazeri A, Doosti R, Naser Moghadasi A, Owji M, Hashemi Taheri AP, Shakouri Rad A, Azimi A, Voineskos AN, Nazeri A, Sahraian MA. Convergent effects of a functional. C3 variant on brain atrophy, demyelination, and cognitive impairment in multiple sclerosis. Mult Scler 2019; 25:532–40
Google Scholar | SAGE Journals | ISI27. Adriani, KS, Brouwer, MC, Geldhoff, MBaas F, Zwinderman AH, Paul Morgan B, Harris CL, van der Ende A, van de Beek D. Common polymorphisms in the complement system and susceptiblity to bacterial meningitis. J Infect 2013; 66:255–62
Google Scholar | Crossref | Medline28. Githeko, AK, Service, MW, Mbogo, CM, Atieli, FK, Juma, FO. Origin of blood meals in indoor and outdoor resting malaria vectors in Western Kenya. Acta Trop 1994; 58:307–16
Google Scholar | Crossref | Medline29. Otieno, RO, Ouma, C, Ong'echa, JMKeller CC, Were T, Waindi EN, Michaels MG, Day RD, Vulule JM, Perkins DJ. Increased severe anemia in HIV-1-exposed and HIV-1-positive infants and children during acute malaria. AIDS 2006; 20:275–80
Google Scholar | Crossref | Medline30. Were, T, Davenport, GC, Hittner, JBOuma C, Vulule JM, Ong‘echa JM, Perkins DJ. Bacteremia in Kenyan children presenting with malaria. J Clin Microbiol 2011; 49:671–6
Google Scholar | Crossref | Medline31. Were, T, Hittner, JB, Ouma, COtieno RO, Orago AS, Ong'echa JM, Vulule JM, Keller CC, Perkins DJ. Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica 2006; 91:1396–9
Google Scholar | Medline32. Humphrey, W, Dalke, A, Schulten, K. VMD: visual molecular dynamics. J Mol Graph 1996; 14:33–8, 27–38
Google Scholar | Crossref | Medline33. Gaunt, TR, Rodriguez, S, Zapata, C, Day, IN. MIDAS: software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinformatics 2006; 7:227
Google Scholar | Crossref | Medline34. Webb, B, Sali, A. Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics 2016; 54:5.6.1–5.6.37
Google Scholar | Crossref35. Janssen, BJ, Huizinga, EG, Raaijmakers, HCRoos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 2005; 437:505–11
Google Scholar | Crossref | Medline | ISI36. Schaid, DJ, Batzler, AJ, Jenkins, GD, Hildebrandt, MA. Exact tests of Hardy-Weinberg equilibrium and homogeneity of disequilibrium across strata. Am J Hum Genet 2006; 79:1071–80
Google Scholar | Crossref | Medline37. Li, SS, Khalid, N, Carlson, C, Zhao, LP. Estimating haplotype frequencies and standard errors for multiple single nucleotide polymorphisms. Biostatistics 2003; 4:513–22
Google Scholar | Crossref | Medline38. Davenport Ouma, C, Hittner, JBWere T, Ouma Y, Ong'echa JM, Perkins DJ. Hematological predictors of increased severe anemia in Kenyan children coinfected with Plasmodium falciparum and HIV-1. Am J Hematol 2010; 85:227–33
Google Scholar | Crossref | Medline39. Janssen, BJ, Christodoulidou, A, McCarthy, A, Lambris, JD, Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature 2006; 444:213–6
Google Scholar | Crossref | Medline40. Sali, A, Blundell, TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234:779–815
Google Scholar | Crossref | Medline | ISI41. Forneris, F, Ricklin, D, Wu, JTzekou A, Wallace RS, Lambris JD, Gros P. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 2010; 330:1816–20
Google Scholar | Crossref | Medline42. Xue, X, Wu, J, Ricklin, DForneris F, Di Crescenzio P, Schmidt CQ, Granneman J, Sharp TH, Lambris JD, Gros P. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses. Nat Struct Mol Biol 2017; 24:643–51
Google Scholar | Crossref | Medline43. Bajic, G, Yatime, L, Sim, RB, Vorup-Jensen, T, Andersen, GR. Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 2013; 110:16426–31
Google Scholar | Crossref | Medline44. Alcorlo, M, Martinez-Barricarte, R, Fernandez, FJRodriguez-Gallego C, Round A, Vega MC, Harris CL, de Cordoba SR, Llorca O. Unique structure of iC3b resolved at a resolution of 24 a by 3D-electron microscopy. Proc Natl Acad Sci Usa U S A 2011; 108:13236–40
Google Scholar | Crossref | Medline45. Wu, J, Wu, YQ, Ricklin, D, Janssen, BJ, Lambris, JD, Gros, P. Structure of complement fragment. C3b-factor H and implications for host protection by complement regulators. Nat Immunol 2009; 10:728–33
Google Scholar | Crossref | Medline46. Abarrategui-Garrido, C, Martinez-Barricarte, R, Lopez-Trascasa, M, de Cordoba, SR, Sanchez-Corral, P. Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood 2009; 114:4261–71
Google Scholar | Crossref | Medline47. de Cordoba, SR, de Jorge, EG. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol 2008; 151:1–13
Google Scholar | Crossref | Medline48. Merle, NS, Noe, R, Halbwachs-Mecarelli, L, Fremeaux-Bacchi, V, Roumenina, LT. Complement system part II: Role in immunity. Front Immunol 2015; 6:257
Google Scholar | Crossref | Medline | ISI49. Verschoor, A, Karsten, CM, Broadley, SP, Laumonnier, Y, Kohl, J. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol Rev 2016; 274:112–26
Google Scholar |

留言 (0)

沒有登入
gif