CCNB1 promotes the development of hepatocellular carcinoma by mediating DNA replication in the cell cycle

1. Marrero, JA, Kulik, LM, Sirlin, CB, Zhu, AX, Finn, RS, Abecassis, MM, Roberts, LR, Heimbach, JK. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology (Baltimore, Md) 2018; 68:723–50
Google Scholar | Crossref | Medline2. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394–424
Google Scholar | Crossref | Medline3. Chu, YW, Chien, CH, Sung, MI, Chen, CW, Chen, YT. dBMHCC: a comprehensive hepatocellular carcinoma (HCC) biomarker database provides a reliable prediction system for novel HCC phosphorylated biomarkers. PloS One 2020; 15:e0234084
Google Scholar | Crossref | Medline4. Chidambaranathan-Reghupaty, S, Fisher, PB, Sarkar, D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res 2021; 149:1–61
Google Scholar | Crossref | Medline5. Wang, CH, Wey, KC, Mo, LR, Chang, KK, Lin, RC, Kuo, JJ. Current trends and recent advances in diagnosis, therapy, and prevention of hepatocellular carcinoma. Asian Pac J Cancer Prev 2015; 16:3595–604
Google Scholar | Crossref | Medline6. Abdel-Rahman, O, Elsayed, Z. Yttrium-90 microsphere radioembolisation for unresectable hepatocellular carcinoma. The Cochrane Database of Systematic Reviews 2020; 1:Cd011313
Google Scholar | Medline7. Vishnoi, N, Yao, J. Single-cell, single-mRNA analysis of Ccnb1 promoter regulation. Sci Rep 2017; 7:2065
Google Scholar | Crossref | Medline8. Gu, J, Liu, X, Li, J, He, Y. MicroRNA-144 inhibits cell proliferation, migration and invasion in human hepatocellular carcinoma by targeting CCNB1. Cancer Cell Int 2019; 19:15
Google Scholar | Crossref | Medline9. Fang, L, Du, WW, Awan, FM, Dong, J, Yang, BB. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett 2019; 459:216–26
Google Scholar | Crossref | Medline10. Alfonso-Pérez, T, Hayward, D, Holder, J, Gruneberg, U, Barr, FA. MAD1-dependent recruitment of CDK1-CCNB1 to kinetochores promotes spindle checkpoint signaling. J Cell Biol 2019; 218:1108–17
Google Scholar | Crossref | Medline11. Hayward, D, Alfonso-Pérez, T, Cundell, MJ, Hopkins, M, Holder, J, Bancroft, J, Hutter, LH, Novak, B, Barr, FA, Gruneberg, U. CDK1-CCNB1 creates a spindle checkpoint-permissive state by enabling MPS1 kinetochore localization. J Cell Biol 2019; 218:1182–99
Google Scholar | Crossref | Medline12. Chen, EB, Qin, X, Peng, K, Li, Q, Tang, C, Wei, YC, Yu, S, Gan, L, Liu, TS. HnRNPR-CCNB1/CENPF axis contributes to gastric cancer proliferation and metastasis. Aging (Albany NY) 2019; 11:7473–91
Google Scholar | Crossref | Medline13. Wang, S, Sun, H, Zhan, X, Wang, Q. MicroRNA-718 serves a tumor-suppressive role in non-small cell lung cancer by directly targeting CCNB1. International Journal of Molecular Medicine 2020; 45:33–44
Google Scholar | Medline14. Guo, J, Gu, Y, Ma, X, Zhang, L, Li, H, Yan, Z, Han, Y, Xie, L, Guo, X. Identification of hub genes and pathways in adrenocortical carcinoma by integrated bioinformatic analysis. J Cell Mol Med 2020; 24:4428–38
Google Scholar | Crossref | Medline15. Li, Q, Zhang, L, Jiang, J, Zhang, Y, Wang, X, Zhang, Q, Wang, Y, Liu, C, Li, F. CDK1 and CCNB1 as potential diagnostic markers of rhabdomyosarcoma: validation following bioinformatics analysis. BMC Med Genomics 2019; 12:198
Google Scholar | Crossref | Medline16. Li, S, Liu, N, Piao, J, Meng, F, Li, Y. CCNB1 expedites the progression of cervical squamous cell carcinoma via the regulation by FOXM1. Onco Targets Ther 2020; 13:12383–95
Google Scholar | Crossref | Medline17. Li, B, Zhu, HB, Song, GD, Cheng, JH, Li, CZ, Zhang, YZ, Zhao, P. Regulating the CCNB1 gene can affect cell proliferation and apoptosis in pituitary adenomas and activate epithelial-to-mesenchymal transition. Oncol Lett 2019; 18:4651–8
Google Scholar | Medline18. Zhang, H, Zhang, X, Li, X, Meng, WB, Bai, ZT, Rui, SZ, Wang, ZF, Zhou, WC, Jin, XD. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 2018; 234:619–31
Google Scholar | Crossref | Medline19. Wang, F, Chen, X, Yu, X, Lin, Q. Degradation of CCNB1 mediated by APC11 through UBA52 ubiquitination promotes cell cycle progression and proliferation of non-small cell lung cancer cells. Am J Transl Res 2019; 11:7166–85
Google Scholar | Medline20. Zou, Y, Ruan, S, Jin, L, Chen, Z, Han, H, Zhang, Y, Jian, Z, Lin, Y, Shi, N, Jin, H. CDK1, CCNB1, and CCNB2 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma. Med Sci Monit 2020; 26:e925289
Google Scholar | Crossref | Medline21. Jin, J, Xu, H, Li, W, Xu, X, Liu, H, Wei, F. LINC00346 acts as a competing endogenous RNA regulating development of hepatocellular carcinoma via modulating CDK1/CCNB1 axis. Front Bioeng Biotechnol 2020; 8:54
Google Scholar | Crossref | Medline22. Li, J, Xia, T, Cao, J, He, D, Chen, Z, Liang, B, Song, J. RP11-295G20.2 facilitates hepatocellular carcinoma progression via the miR-6884-3p/CCNB1 pathway. Aging (Albany NY) 2020; 12:14918–32
Google Scholar | Crossref | Medline23. Zhuang, L, Yang, Z, Meng, Z. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. BioMed Research International 2018; 2018:7897346
Google Scholar | Crossref | Medline24. Yue, C, Ren, Y, Ge, H, Liang, C, Xu, Y, Li, G, Wu, J. Comprehensive analysis of potential prognostic genes for the construction of a competing endogenous RNA regulatory network in hepatocellular carcinoma. Onco Targets Ther 2019; 12:561–76
Google Scholar | Crossref | Medline25. Zhou, Z, Li, Y, Hao, H, Wang, Y, Zhou, Z, Wang, Z, Chu, X. Screening hub genes as prognostic biomarkers of hepatocellular carcinoma by bioinformatics analysis. Cell Transplant 2019; 28:76S–86S
Google Scholar | SAGE Journals | ISI26. Zhang, DY, Sun, QC, Zou, XJ, Song, Y, Li, WW, Guo, ZQ, Liu, SS, Liu, L, Wu, DH. Long noncoding RNA UPK1A-AS1 indicates poor prognosis of hepatocellular carcinoma and promotes cell proliferation through interaction with EZH2. J Exp Clin Cancer Res 2020; 39:229
Google Scholar | Crossref | Medline27. Zhang, Y, Lin, Z, Lin, X, Zhang, X, Zhao, Q, Sun, Y. A gene module identification algorithm and its applications to identify gene modules and key genes of hepatocellular carcinoma. Sci Rep 2021; 11:5517
Google Scholar | Crossref | Medline28. Li, M, Shang, H, Wang, T, Yang, SQ, Li, L. Huanglian decoction suppresses the growth of hepatocellular carcinoma cells by reducing CCNB1 expression. World J Gastroenterol 2021; 27:939–58
Google Scholar | Crossref | Medline29. Zhang, H, Liu, R, Sun, L, Guo, W, Ji, X, Hu, X. Comprehensive analysis of gene expression changes and validation in hepatocellular carcinoma. Onco Targets Ther 2021; 14:1021–31
Google Scholar | Crossref | Medline30. Li, Z, Lin, Y, Cheng, B, Zhang, Q, Cai, Y. Identification and analysis of potential key genes associated with hepatocellular carcinoma based on integrated bioinformatics methods. Front Genet 2021; 12:57123–1
Google Scholar31. Oshi, M, Kim, TH, Tokumaru, Y, Yan, L, Matsuyama, R, Endo, I, Cherkassky, L, Takabe, K. Enhanced DNA repair pathway is associated with cell proliferation and worse survival in hepatocellular carcinoma (HCC). Cancers (Basel) 2021; 13:323
Google Scholar | Crossref | Medline32. Li, J, Gao, JZ, Du, JL, Huang, ZX, Wei, LX. Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int J Oncol 2014; 45:1547–55
Google Scholar | Crossref | Medline33. Shi, M, Dai, WQ, Jia, RR, Zhang, QH, Wei, J, Wang, YG, Xiang, SH, Liu, B, Xu, L. APC(CDC20)-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma. Cancer Lett 2021; 496:144–55
Google Scholar | Crossref | Medline34. Bayard, Q, Meunier, L, Peneau, C, Renault, V, Shinde, J, Nault, JC, Mami, I, Couchy, G, Amaddeo, G, Tubacher, E, Bacq, D, Meyer, V, La Bella, T, Debaillon-Vesque, A, Bioulac-Sage, P, Seror, O, Blanc, JF, Calderaro, J, Deleuze, JF, Imbeaud, S, Zucman-Rossi, J, Letouzé, E. Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nat Commun 2018; 9:5235
Google Scholar | Crossref | Medline35. Fu, H, Zhang, Y, Chen, Y, Chen, J, Chen, P. CSN1 facilitates proliferation and migration of hepatocellular carcinoma cells by upregulating cyclin A2 expression. Mol Med Rep 2021; 23:1
Google Scholar | Crossref | Medline36. Silva Cascales, H, Burdova, K, Middleton, A, Kuzin, V, Müllers, E, Stoy, H, Baranello, L, Macurek, L, Lindqvist, A. Cyclin A2 localises in the cytoplasm at the S/G2 transition to activate PLK1. Life Sci Alliance 2021; 4:e202000980
Google Scholar | Crossref | Medline37. Gheghiani, L, Wang, L, Zhang, Y, Moore, XTR, Zhang, J, Smith, SC, Tian, Y, Wang, L, Turner, K, Jackson-Cook, CK, Mukhopadhyay, ND, Fu, Z. PLK1 induces chromosomal instability and overrides cell cycle checkpoints to drive tumorigenesis. Cancer Res 2021; 81:1293–307
Google Scholar | Crossref | Medline38. Tian, L, Yao, K, Liu, K, Han, B, Dong, H, Zhao, W, Jiang, W, Qiu, F, Qu, L, Wu, Z, Zhou, B, Zhong, M, Zhao, J, Qiu, X, Zhong, L, Guo, X, Shi, T, Hong, X, Lu, S. PLK1/NF-κB feedforward circuit antagonizes the Mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression. Oncogene 2020; 39:3145–62
Google Scholar | Crossref | Medline39. Zhang, S, Liu, Z, Wu, D, Chen, L, Xie, L. Single-cell RNA-Seq analysis reveals microenvironmental infiltration of plasma cells and hepatocytic prognostic markers in HCC with cirrhosis. Front Oncol 2020; 10:596318
Google Scholar | Crossref | Medline40. Kaneko, Y, Shimoda, K, Ayala, R, Goto, Y, Panico, S, Zhang, X, Kondo, H. p97 and p47 function in membrane tethering in cooperation with FTCD during mitotic Golgi reassembly. EMBO J 2021; 40:e105853
Google Scholar | Crossref | Medline41. Zeng, H, Ji, J, Song, X, Huang, Y, Li, H, Huang, J, Ma, X. Stemness related genes revealed by network analysis associated with tumor immune microenvironment and the clinical outcome in lung adenocarcinoma. Front Genet 2020; 11:549213
Google Scholar | Crossref | Medline42. Lin, J, Hou, Y, Huang, S, Wang, Z, Sun, C, Wang, Z, He, X, Tam, NL, Wu, C, Wu, L. Exportin-T promotes tumor proliferation and invasion in hepatocellular carcinoma. Mol Carcinog 2019; 58:293–304
Google Scholar | Crossref | Medline43. Zhang, Q, Su, R, Shan, C, Gao, C, Wu, P. Non-SMC condensin I complex, subunit G (NCAPG) is a novel mitotic gene required for hepatocellular cancer cell proliferation and migration. Oncol Res 2018; 26:269–76
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif