Implication of Toll/IL-1 receptor domain containing adapters in Porphyromonas gingivalis-induced inflammation

1. Pihlstrom, BL, Michalowicz, BS and, Johnson, NW. Periodontal diseases. Lancet 2005; 366: 1809–1820.
Google Scholar | Crossref | Medline | ISI2. Eke, PI, Borgnakke, WS and, Genco, RJ. Recent epidemiologic trends in periodontitis in the USA. Periodontol 2000 2020; 82: 257–267.
Google Scholar | Crossref | Medline3. Kassebaum, NJ, Bernabé, E, Dahiya, M, et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res 2014; 93: 1045–1053.
Google Scholar | SAGE Journals | ISI4. Fuller, J, Donos, N, Suvan, J, et al. Association of oral health-related quality of life measures with aggressive and chronic periodontitis. J Periodont Res 2020; 55(4): 574–580.
Google Scholar5. Graziani, F, Gennai, S, Solini, A, et al. A systematic review and meta-analysis of epidemiologic observational evidence on the effect of periodontitis on diabetes an update of the EFP-AAP review. J Clin Periodontol 2018; 45: 167–187.
Google Scholar | Crossref | Medline6. Huck, O, Elkaim, R, Davideau, JL, et al. Porphyromonas gingivalis and its lipopolysaccharide differentially regulate the expression of Cathepsin B in endothelial cells. Mol Oral Microbiol 2012; 27: 137–148.
Google Scholar | Crossref | Medline7. Lamont, RJ, Koo, H and, Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018; 16: 745.
Google Scholar | Crossref | Medline8. Gabarrini, G, Grasso, S, Van Winkelhoff, AJ, et al. Gingimaps: protein localization in the oral pathogen Porphyromonas gingivalis. Microbiol Mol Biol Rev 2020; 84(1): e00032–19.
Google Scholar | Crossref | Medline9. Mao, S, Park, Y, Hasegawa, Y, et al. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas Gingivalis. Cell Microbiol 2007; 9: 1997–2007.
Google Scholar | Crossref | Medline10. Bugueno, IM, Batool, F, Keller, L, et al. Porphyromonas Gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci Rep 2018; 8: 1–13.
Google Scholar | Crossref | Medline11. Bugueno, IM, Batool, F, Korah, L, et al. Porphyromonas gingivalis differentially modulates apoptosome apoptotic peptidase activating factor 1 in epithelial cells and fibroblasts. Am J Pathol 2017; 188(2): 404–416.
Google Scholar12. Huck, O, Elkaim, R, Davideau, JL, et al. Porphyromonas Gingivalis-impaired innate immune response via NLRP3 proteolysis in endothelial cells. Innate Immun 2015; 21: 65–72.
Google Scholar | SAGE Journals | ISI13. Lamont, RJ and, Jenkinson, HF. Life below the gum line: pathogenic mechanisms of Porphyromonas Gingivalis. Microbiol Mol Biol Rev 1998; 62: 1244–1263.
Google Scholar | Crossref | Medline | ISI14. Bugueno, IM, El-Ghazouani, FZ, Batool, F, et al. Porphyromonas Gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Sci Rep 2020; 10: 1–12.
Google Scholar | Crossref | Medline15. Mulhall, H, Huck, O, Amar, S. Porphyromonas Gingivalis, a long-range pathogen: systemic impact and therapeutic implications. Microorganisms 2020; 8: 869.
Google Scholar | Crossref16. Elkaïm, R, Dahan, M, Kocgozlu, L, et al. Prevalence of periodontal pathogens in subgingival lesions, atherosclerotic plaques and healthy blood vessels: a preliminary study. J Periodont Res 2008; 43: 224–231.
Google Scholar | Crossref | Medline | ISI17. Spahr, A, Klein, E, Khuseyinova, N, et al. Periodontal infections and coronary heart disease: role of periodontal bacteria and importance of total pathogen burden in the coronary event and periodontal disease (CORODONT) study. Arch Intern Med 2006; 166: 554–559.
Google Scholar | Crossref | Medline18. Bugueno, IM, Khelif, Y, Seelam, N, et al. Porphyromonas gingivalis differentially modulates cell death profile in Ox-LDL and TNF-α pre-treated endothelial cells. PLoS One 2016; 11(4): e0154590.
Google Scholar | Crossref19. Libby, P, Loscalzo, J, Ridker, PM, et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol 2018; 72: 2071–2081.
Google Scholar | Crossref | Medline20. Madan, M, Bishayi, B, Hoge, M, et al. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis 2008; 197: 504–514.
Google Scholar | Crossref | Medline | ISI21. Elkaim, R, Werner, S, Kocgozlu, L, et al. Gingivalis regulates the expression of cathepsin B and cystatin C. J Dent Res 2008; 87: 932–936.
Google Scholar | SAGE Journals | ISI22. Akira, S. TLR signaling. Curr Top Microbiol Immunol 2006; 311: 1–16.
Google Scholar | Medline | ISI23. Sobrino, T, Regueiro, U, Malfeito, M, et al. Higher expression of toll-like receptors 2 and 4 in blood cells of keratoconus patiens. Sci Rep 2017; 7: 1–7.
Google Scholar | Crossref | Medline24. Maekawa, T, Krauss, JL, Abe, T, et al. Porphyromonas Gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 2014; 15: 768–778.
Google Scholar | Crossref | Medline | ISI25. Nativel, B, Couret, D, Giraud, P, et al. Porphyromonas Gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Sci Rep 2017; 7(1): 15789.
Google Scholar | Crossref | Medline26. Wang, J, Shao, Y, Bennett, TA, et al. The functional effects of physical interactions among toll-like receptors 7, 8, and 9. J Biol Chem 2006; 281: 37427–37434.
Google Scholar | Crossref | Medline27. Kocgozlu, L, Elkaim, R, Tenenbaum, H, et al. Variable cell responses to P. Gingivalis lipopolysaccharide. J Dent Res 2009; 88: 741–745.
Google Scholar | SAGE Journals | ISI28. O’Neill, LAJ, Bowie, AG. The family of five: TIR-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol 2007; 7: 353–364.
Google Scholar | Crossref | Medline | ISI29. O’Neill, LA. The interleukin-1 receptor/toll-like receptor superfamily: 10 years of progress. Immunol Rev 2008; 226: 10–18.
Google Scholar | Crossref | Medline | ISI30. O’Neill, LA, Fitzgerald, KA, Bowie, AG. The toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 2003; 24: 286–290.
Google Scholar | Crossref | Medline31. Armitage, GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999; 4: 1–6.
Google Scholar | Crossref | Medline32. Inaba, H, Nomura, R, Kato, Y, et al. Adhesion and invasion of gingival epithelial cells by Porphyromonas gulae. PLoS One 2019; 14: e0213309.
Google Scholar | Crossref | Medline33. Bugueno, IM, El-Ghazouani, FZ, Batool, F, et al. Porphyromonas gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Sci Rep 2020; 10: 1778.
Google Scholar | Crossref | Medline34. Bugueno, IM, Batool, F, Keller, L, et al. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci Rep 2018; 8: 14914.
Google Scholar | Crossref | Medline35. Hirsch, JD, Eslamizar, L, Filanoski, BJ, et al. Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal Biochem 2002; 308: 343–357.
Google Scholar | Crossref | Medline36. Kresoja-Rakic, J, Felley-Bosco, E. Desthiobiotin-streptavidin-affinity mediated purification of RNA-interacting proteins in mesothelioma cells. J Vis Exp 2018; (134): 57516.
Google Scholar37. Mysak, J, Podzimek, S, Sommerova, P, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview, 2014: 476068.
Google Scholar38. Soto, C, Bugueño, I, Hoare, A, et al. The Porphyromonas Gingivalis o antigen is required for inhibition of apoptosis in gingival epithelial cells following bacterial infection. J Periodontal Res 2016; 51: 518–528.
Google Scholar | Crossref | Medline39. Huck, O, Al-Hashemi, J, Poidevin, L, et al. Identification and characterization of microRNA differentially expressed in macrophages exposed to Porphyromonas Gingivalis infection. Infect Immun 2017; 85(3): e00771–16.
Google Scholar | Crossref | Medline40. Díaz, L, Hoare, A, Soto, C, et al. Changes in lipopolysaccharide profile of Porphyromonas Gingivalis clinical isolates correlate with changes in colony morphology and polymyxin B resistance. Anaerobe 2015; 33: 25–32.
Google Scholar | Crossref | Medline41. Pan, C, Xu, X, Tan, L, et al. The effects of Porphyromonas Gingivalis on the cell cycle progression of human gingival epithelial cells. Oral Dis 2014; 20: 100–108.
Google Scholar | Crossref | Medline42. Elkaïm, R, Dahan, M, Kocgozlu, L, et al. Prevalence of periodontal pathogens in subgingival lesions, atherosclerotic plaques and healthy blood vessels: a preliminary study. J Periodontal Res 2008; 43: 224–231.
Google Scholar | Crossref | Medline | ISI43. Meyle, J, Dommisch, H, Groeger, S, et al. The innate host response in caries and periodontitis. J Clin Periodontol 2017; 44: 1215–1225.
Google Scholar | Crossref | Medline44. Mai, J, Virtue, A, Shen, J, et al. An evolving new paradigm: endothelial cells-conditional innate immune cells. J Hematol Oncol 2013; 22: 61.
Google Scholar | Crossref45. Kocgozlu, L, Elkaim, R, Tenenbaum, H, et al. Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res 2009; 88: 741–745.
Google Scholar | SAGE Journals | ISI46. Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 2015; 15: 30–44.
Google Scholar | Crossref | Medline | ISI47. Li, W, Ke, Y, Wang, Y, et al. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection. Biochem Biophys Res Commun 2016; 477: 509–514.
Google Scholar | Crossref | Medline48. Qiu, J, Nie, Y, Zhao, Y, et al. Safeguarding intestine cells against enteropathogenic Escherichia Coli by intracellular protein reaction, a preventive antibacterial mechanism. Proc Natl Acad Sci USA 2020; 117: 5260–5268.
Google Scholar | Crossref | Medline49. Shaik-Dasthagirisaheb, YB, Huang, N, Gibson, FC. Inflammatory response to Porphyromonas Gingivalis partially requires interferon regulatory factor (IRF) 3. Innate Immun 2014; 20: 312–319.
Google Scholar | SAGE Journals | ISI50. Shang, L, Deng, D, Buskermolen, JK, et al. Commensal and pathogenic biofilms alter toll-like receptor signaling in reconstructed human gingiva. Front Cell Infect Microbiol 2019; 9: 282.
Google Scholar | Crossref | Medline51. Maekawa, T, Krauss, J L, Abe, T, et al. Porphyromonas Gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 2014; 15: 768–778.

留言 (0)

沒有登入
gif