IRAK-4 in macrophages contributes to inflammatory osteolysis of wear particles around loosened hip implants

1. Konttinen, YT, Takagi, M, Mandelin, J, et al. Acid attack and cathepsin K in bone resorption around total hip replacement prosthesis. J Bone Miner Res 2001; 16: 1780–1786.
Google Scholar | Crossref | Medline | ISI2. Takagi, M, Santavirta, S, Ida, H, et al. High-turnover periprosthetic bone remodeling and immature bone formation around loose cemented total hip joints. J Bone Miner Res 2001; 16: 79–88.
Google Scholar | Crossref | Medline3. Chen, W, Li, Z, Guo, Y, et al . Wear particles impair antimicrobial activity via suppression of reactive oxygen species generation and ERK1/2 phosphorylation in activated macrophages. Inflammation 2015; 38: 1289–1296.
Google Scholar | Crossref | Medline4. Zhang, Y, Yu, S, Xiao, J, et al. Wear particles promote endotoxin tolerance in macrophages by inducing interleukin-1 receptor-associated kinase-M expression. J Biomed Mater Res A 2013; 101: 733–739.
Google Scholar | Crossref | Medline5. Zhang, Y, Hou, C, Yu, S, et al. IRAK-M in macrophages around septically and aseptically loosened hip implants. J Biomed Mater Res A 2012; 100: 261–268.
Google Scholar | Crossref | Medline6. Friedlander, AH. Oral cavity staphylococci are a potential source of prosthetic joint infection. Clin Infect Dis 2010; 50: 1682–1683.
Google Scholar | Crossref | Medline7. Xing, Z, Pabst, MJ, Hasty, KA, et al. Accumulation of LPS by polyethylene particles decreases bone attachment to implants. J Orthopaed Res 2006; 24: 959–966.
Google Scholar | Crossref | Medline | ISI8. Esteban, J, Gomez-Barrena, E, Cordero, J, et al. Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol 2008; 46: 488–492.
Google Scholar | Crossref | Medline | ISI9. Trampuz, A, Piper, KE, Jacobson, MJ, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 2007; 357: 654–663.
Google Scholar | Crossref | Medline | ISI10. Nalepka, JL, Lee, MJ, Kraay, MJ, et al. Lipopolysaccharide found in aseptic loosening of patients with inflammatory arthritis. Clin Orthop Relat Res 2006; 451: 229–235.
Google Scholar | Crossref | Medline11. Savarino, L, Baldini, N, Tarabusi, C, et al. Diagnosis of infection after total hip replacement. J Biomed Mater Res B Appl Biomater 2004; 70: 139–145.
Google Scholar | Crossref | Medline12. Chen, W, Li, Z, Guo, Y, et al. Wear particles promote reactive oxygen species-mediated inflammation via the nicotinamide adenine dinucleotide phosphate oxidase pathway in macrophages surrounding loosened implants. Cell Physiol Biochem 2015; 35: 1857–1867.
Google Scholar | Crossref | Medline13. Greenfield, EM, Beidelschies, MA, Tatro, JM, et al. Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate Toll-like receptors. J Biol Chem 2010; 285: 32378–32384.
Google Scholar | Crossref | Medline14. Hoenders, CS, Harmsen, MC, van Luyn, MJ. The local inflammatory environment and microorganisms in "aseptic" loosening of hip prostheses. J Biomed Mater Res B Appl Biomater 2008; 86: 291–301.
Google Scholar | Crossref | Medline15. Bi, Y, Seabold, JM, Kaar, SG, et al. Adherent endotoxin on orthopedic wear particles stimulates cytokine production and osteoclast differentiation. J Bone Miner Res 2001; 16: 2082–2091.
Google Scholar | Crossref | Medline | ISI16. Tamaki, Y, Takakubo, Y, Goto, K, et al. Increased expression of toll-like receptors in aseptic loose periprosthetic tissues and septic synovial membranes around total hip implants. J Rheumatol 2009; 36: 598–608.
Google Scholar | Crossref | Medline17. Schwab, LP, Xing, Z, Hasty, KA, et al. Titanium particles and surface-bound LPS activate different pathways in IC-21 macrophages. J Biomed Mater Res B Appl Biomater 2006; 79: 66–73.
Google Scholar | Crossref | Medline18. Pajarinen, J, Mackiewicz, Z, Pollanen, R, et al. Titanium particles modulate expression of Toll-like receptor proteins. J Biomed Mater Res A 2010; 92: 1528–1537.
Google Scholar | Medline19. Pajarinen, J, Cenni, E, Savarino, L, et al. Profile of toll-like receptor-positive cells in septic and aseptic loosening of total hip arthroplasty implants. J Biomed Mater Res A 2010; 94: 84–92.
Google Scholar | Crossref | Medline20. Ringwood, L, Li, L. The involvement of the interleukin-1 receptor-associated kinases (IRAKs) in cellular signaling networks controlling inflammation. Cytokine 2008; 42: 1–7.
Google Scholar | Crossref | Medline21. Suzuki, N, Suzuki, S, Millar, DG, et al. A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 2006; 311: 1927–1932.
Google Scholar | Crossref | Medline22. Takagi, M, Tamaki, Y, Hasegawa, H, et al. Toll-like receptors in the interface membrane around loosening total hip replacement implants. J Biomed Mater Res A 2007; 81: 1017–1026.
Google Scholar | Crossref | Medline | ISI23. Takagi, M, Tamaki, Y, Hasegawa, H, et al. Toll-like receptors in the interface membrane around loosening total hip replacement implants. J Biomed Mater Res A 2007; 81: 1017–1026.
Google Scholar | Crossref | Medline | ISI24. Ragab, AA, Van De Motter, R, Lavish, SA, et al. Measurement and removal of adherent endotoxin from titanium particles and implant surfaces. J Orthopaed Res 1999; 17: 803–809.
Google Scholar | Crossref | Medline | ISI25. Nich, C, Goodman, SB. Role of macrophages in the biological reaction to wear debris from joint replacements. J Long Term Eff Med Implants 2014; 24: 259–265.
Google Scholar | Crossref | Medline26. Nich, C, Takakubo, Y, Pajarinen, J, et al. Macrophages-key cells in the response to wear debris from joint replacements. J Biomed Mater Res A 2013; 101: 3033–3045.
Google Scholar | Crossref | Medline | ISI27. Hao, HN, Zheng, B, Nasser, S, et al. The roles of monocytic heat shock protein 60 and Toll-like receptors in the regional inflammation response to wear debris particles. J Biomed Mater Res A 2010; 92: 1373–1381.
Google Scholar | Medline28. Greenfield, EM, Bechtold, J. What other biologic and mechanical factors might contribute to osteolysis? J Am Acad Orthop Surg 2008; 16 Suppl 1: S56–S62.
Google Scholar | Crossref | Medline29. Greenfield, EM, Bi, Y, Ragab, AA, et al. Does endotoxin contribute to aseptic loosening of orthopedic implants? J Biomed Mater Res B Appl Biomater 2005; 72: 179–185.
Google Scholar | Crossref | Medline30. Nelson, CL, McLaren, AC, McLaren, SG, et al. Is aseptic loosening truly aseptic? Clin Orthop Relat Res 2005; 437: 25–30.
Google Scholar31. Hirayama, T, Tamaki, Y, Takakubo, Y, et al. Toll-like receptors and their adaptors are regulated in macrophages after phagocytosis of lipopolysaccharide-coated titanium particles. J Orthopaed Res 2011; 29: 984–992.
Google Scholar | Crossref | Medline32. Kim, TW, Staschke, K, Bulek, K, et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med 2007; 204: 1025–1036.
Google Scholar | Crossref | Medline33. Suzuki, N, Suzuki, S, Duncan, GS, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 2002; 416: 750–756.
Google Scholar | Crossref | Medline | ISI34. Picard, C, Puel, A, Bonnet, M, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003; 299: 2076–2079.
Google Scholar | Crossref | Medline35. Janssens, S, Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 2003; 11: 293–302.
Google Scholar | Crossref | Medline | ISI36. Kuglstatter, A, Villasenor, AG, Shaw, D, et al. Cutting edge: IL-1 receptor-associated kinase 4 structures reveal novel features and multiple conformations. J Immunol 2007; 178: 2641–2645.
Google Scholar | Crossref | Medline37. Gosu, V, Basith, S, Durai, P, et al. Molecular evolution and structural features of IRAK family members. PLoS One 2012; 7: e49771.
Google Scholar | Crossref | Medline38. van Bruggen, R, Drewniak, A, Tool, AT, et al. Toll-like receptor responses in IRAK-4-deficient neutrophils. J Innate Immun 2010; 2: 280–287.
Google Scholar | Crossref | Medline39. Lin, TH, Tamaki, Y, Pajarinen, J, et al. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-kappaB as a therapeutic target. Acta Biomater 2014; 10: 1–10.
Google Scholar | Crossref | Medline40. Smith, MV, Lee, MJ, Islam, AS, et al. Inhibition of the PI3K-Akt signaling pathway reduces tumor necrosis factor-alpha production in response to titanium particles in vitro. J Bone Joint Surg Am 2007; 89: 1019–1027.
Google Scholar | Medline | ISI41. Akisue, T, Bauer, TW, Farver, CF, et al. The effect of particle wear debris on NFkappaB activation and pro-inflammatory cytokine release in differentiated THP-1 cells. J Biomed Mater Res 2002; 59: 507–515.
Google Scholar | Crossref | Medline | ISI42. Nijampurkar, B, Qureshi, F, Jain, N, et al. Anti-inflammatory role of thyroid hormones on rat air pouch model of inflammation. Inflamm Allergy Drug Targets 2015; 14: 117–124.
Google Scholar | Crossref | Medline43. Inada, T, Sumi, C, Hirota, K, et al. Mitigation of inflammation using the intravenous anesthetic dexmedetomidine in the mouse air pouch model. Immunopharm Immunot 2017; 39: 225–232.
Google Scholar | Crossref | Medline44. Cheng, T, Zhao, Y, Li, B, et al. Curcumin attenuation of wear particle-induced osteolysis via RANKL signaling pathway suppression in mouse calvarial model. Mediat Inflamm 2017; 2017: 5784374.
Google Scholar | Crossref | Medline45. Salkeld, SL, Patron, LP, Lien, JC, et al. Biological and functional evaluation of a novel pyrolytic carbon implant for the treatment of focal osteochondral defects in the medial femoral condyle: assessment in a canine model. J Orthop Surg Res 2016; 11: 155.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif