Paltridge JL, Belle L, Khew-Goodall Y. The secretome in cancer progression. Biochim Biophys Acta. Nov; 2013;1834(11):2233–41.
Article PubMed CAS Google Scholar
Ritchie S, Reed DA, Pereira BA, Timpson P. The cancer cell secretome drives cooperative manipulation of the tumour microenvironment to accelerate tumourigenesis. Fac Rev. Jan 2021;19:4.
de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 2023;Mar 13;41(3), 374–403.
Madden EC, Gorman AM, Logue SE, Samali A. Tumour Cell Secretome in Chemoresistance and Tumour recurrence. Trends Cancer. Jun; 2020;6(6):489–505.
Article PubMed CAS Google Scholar
Uhlén M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, et al. The human secretome. Sci Signal. Nov 2019;26(609):eaaz0274.
Dahmani A, Delisle JS. TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers (Basel). 2018;Jun 11;10(6):194.
Batlle E, Massagué J. Transforming growth Factor-β signaling in immunity and Cancer. Immun 2019;Apr 16;50(4), 924–40.
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev. Dec; 2024;80:12–23.
Article PubMed CAS Google Scholar
Fousek K, Horn LA, Palena C. Interleukin-8: a chemokine at the intersection of cancer plasticity. Pharmacol Ther. Mar; 2021;219:107692.
Article PubMed CAS Google Scholar
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. Aug; 2021;21(8):485–98.
Article PubMed PubMed Central CAS Google Scholar
O’ Connor T, Heikenwalder M. CCL2 in the Tumor Microenvironment. Adv Exp Med Biol. 2021;1302:1–14.
Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. May; 2020;581(7806):100–5.
Article PubMed PubMed Central CAS Google Scholar
Kitamura H, Kamon H, Sawa S, Park SJ, Katunuma N, Ishihara K, et al. IL-6-STAT3 controls intracellular MHC class II alphabeta dimer level through cathepsin S activity in dendritic cells. Immunity. Nov; 2005;23(5):491–502.
Article PubMed CAS Google Scholar
Koppelman B, Neefjes JJ, de Vries JE, de Waal Malefyt R. Interleukin-10 down-regulates MHC class II alphabeta peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity. Dec; 1997;7(6):861–71.
Article PubMed CAS Google Scholar
Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity. 2021;May 11;54(5), 859–874.
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;Sep 1;7(1), 305.
Worsley CM, Veale RB, Mayne ES. The acidic tumour microenvironment: manipulating the immune response to elicit escape. Hum Immunol. May; 2022;83(5):399–408.
Article PubMed CAS Google Scholar
Navarro F, Casares N, Martín-Otal C, Lasarte-Cía A, Gorraiz M, Sarrión P et al. Overcoming T cell dysfunction in acidic pH to enhance adoptive T cell transfer immunotherapy. Oncoimmunology. 2022;May 1;11(1), 2070337.
Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. Mar; 2021;591(7851):645–51.
Article PubMed PubMed Central CAS Google Scholar
Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine. Nov; 2021;73:103627.
Article PubMed PubMed Central CAS Google Scholar
Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M et al. Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. Cell Rep. 2019;Oct 1;29(1), 135–150.e139.
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol. Jun 2023;5(1):59.
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024;Aug 14;15, 1440269.
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;Dec 23;35(6), 871–882.
Edwards DN, Ngwa VM, Raybuck AL, Wang S, Hwang Y, Kim LC et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J Clin Invest 2021;Feb 15;131(4), e140100.
Song X, Si Q, Qi R, Liu W, Li M, Guo M, et al. Indoleamine 2,3-Dioxygenase 1: a promising therapeutic target in malignant tumor. Front Immunol. Dec 2021;23:800630.
Menjivar RE, Nwosu ZC, Du W, Donahue KL, Hong HS, Espinoza C et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. Elife. 2023;Feb 2;12, e80721.
Tang Y, Chen Z, Zuo Q, Orcid Id, Kang Y. Regulation of CD8 + T cells by lipid metabolism in cancer progression. Cell Mol Immunol. Nov; 2024;21(11):1215–30.
Article PubMed PubMed Central CAS Google Scholar
Bayerl F, Meiser P, Donakonda S, Hirschberger A, Lacher SB, Pedde AM et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immun 2023;Jun 13;56(6), 1341–e13581311.
Cuenca-Escalona J, Bödder J, Subtil B, Sánchez-Sánchez M, Vidal-Manrique M, Sweep MWD, et al. EP2/EP4 targeting prevents tumor-derived PGE2-mediated immunosuppression in cDC2s. J Leukoc Biol. 2024;116(6):1554–67. Nov 27.
Zheng M, Zhang W, Chen X, Guo H, Wu H, Xu Y, et al. The impact of lipids on the cancer-immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy. Acta Pharm Sin B. Apr; 2023;13(4):1488–97.
Article PubMed CAS Google Scholar
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. Mar; 2017;276(1):121–44.
Article PubMed PubMed Central CAS Google Scholar
Wu Y, Fu H, Hao J, Yang Z, Qiao X, Li Y et al. Tumor-derived exosomal PD-L1: a new perspective in PD-1/PD-L1 therapy for lung cancer. Front Immunol. 2024;Mar 18;15, 1342728.
Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. Sep 2013;30(1):74.
Wang J, Zeng H, Zhang H, Han Y. The role of exosomal PD-L1 in tumor immunotherapy. Transl Oncol. May; 2021;14(5):101047.
Article PubMed PubMed Central CAS Google Scholar
Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology. 2015;Apr 2;4(9), e1027472.
Regimbeau M, Abrey J, Vautrot V, Causse S, Gobbo J, Garrido C. Heat shock proteins and exosomes in cancer theranostics. Semin Cancer Biol. Nov; 2022;86(Pt 1):46–57.
Article PubMed CAS Google Scholar
Kikete S, Chu X, Wang L, Bian Y. Endogenous and tumour-derived microRNAs regulate cross-presentation in dendritic cells and consequently cytotoxic T cell function. Cytotechnology. Dec; 2016;68(6):2223–33.
Article PubMed PubMed Central CAS Google Scholar
Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. Sep; 2011;96(9):1302–9.
Article PubMed PubMed Central CAS Google Scholar
Kakarla R, Hur J, Kim YJ, Kim J, Chwae YJ. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med. Jan; 2020;52(1):1–6.
Article PubMed PubMed Central CAS Google Scholar
Ippolito L, Duatti A, Iozzo M, Comito G, Pardella E, Lorito N, et al. Lactate supports cell-autonomous ECM production to sustain metastatic behavior in prostate cancer. EMBO Rep. Aug; 2024;25(8):3506–31.
Article PubMed PubMed Central CAS Google Scholar
Rømer AMA, Thorseth ML, Madsen DH. Immune Modulatory properties of collagen in Cancer. Front Immunol. 2021;Dec 8;12, 791453.
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer. Cell Death Dis. 2024;May 1;15(5), 307.
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis. 2024;May 1;15(5), 307.
Chirivì M, Maiullari F, Milan M, Presutti D, Cordiglieri C, Crosti M et al. Tumor Extracellular Matrix Stiffness Promptly Modulates the Phenotype and Gene Expression of Infiltrating T Lymphocytes. Int J Mol Sci. 2021;May 30;22(11), 5862.
Lv D, Fei Y, Chen H, Wang J, Han W, Cui B et al. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front Immunol. 2024;Apr 16;15, 1340702.
Nicolas-Boluda A, Vaquero J, Vimeux L, Guilbert T, Barrin S, Kantari-Mimoun C et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. Elife. 2021; Jun 9;10, e58688.
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: mechanisms and therapeutic vulnerability. Cell Rep Med. Sep 2023;19(9):101170.
留言 (0)