Using Free-Living Heart Rate Data as an Objective Method to Assess Physical Activity: A Scoping Review and Recommendations by the INTERLIVE-Network Targeting Consumer Wearables

De la Fuente Robles YM, Ricoy Cano AJ, Albín Rodríguez AP, López Ruiz JL, Espinilla EM. Past, present and future of research on wearable technologies for healthcare: a bibliometric analysis using scopus. Sensors. 2022;22:8599. https://doi.org/10.3390/s22228599.

Article  PubMed  Google Scholar 

Kuratomi D, Shin C, Duffy VG. Systematic literature review on the advances of wearable technologies. 2023:78–95. https://doi.org/10.1007/978-3-031-48047-8_5.

Fortino G, Gravina R, Galzarano S. Wearable computing: from modeling to implementation of wearable systems based on body sensor networks. Wiley-IEEE Press; 2018.

Mühlen JM, Stang J, Lykke Skovgaard E, Judice PB, Molina-Garcia P, Johnston W, et al. Recommendations for determining the validity of consumer wearable heart rate devices: expert statement and checklist of the INTERLIVE Network. Br J Sports Med. 2021. https://doi.org/10.1136/bjsports-2020-103148.

Article  PubMed  Google Scholar 

Johnston W, Judice PB, Molina García P, Mühlen JM, Lykke Skovgaard E, Stang J, et al. Recommendations for determining the validity of consumer wearable and smartphone step count: expert statement and checklist of the INTERLIVE network. Br J Sports Med. 2021;55:780–93. https://doi.org/10.1136/BJSPORTS-2020-103147.

Article  PubMed  Google Scholar 

Molina-Garcia P, Notbohm HL, Schumann M, Argent R, Hetherington-Rauth M, Stang J, et al. Validity of estimating the maximal oxygen consumption by consumer wearables: a systematic review with meta-analysis and expert statement of the INTERLIVE Network. Sports Med. 2022;52:1577–97. https://doi.org/10.1007/S40279-021-01639-Y.

Article  PubMed  PubMed Central  Google Scholar 

Argent R, Hetherington-Rauth M, Stang J, Tarp J, Ortega FB, Molina-Garcia P, et al. Recommendations for determining the validity of consumer wearables and smartphones for the estimation of energy expenditure: expert statement and checklist of the INTERLIVE network. Sports Med. 2022;52:1817–32. https://doi.org/10.1007/S40279-022-01665-4.

Article  PubMed  PubMed Central  Google Scholar 

McDonough DJ, Su X, Gao Z. Health wearable devices for weight and BMI reduction in individuals with overweight/obesity and chronic comorbidities: systematic review and network meta-analysis. Br J Sports Med. 2021;55:917–25. https://doi.org/10.1136/BJSPORTS-2020-103594.

Article  PubMed  Google Scholar 

Gao Z, Liu W, McDonough DJ, Zeng N, Lee JE. The dilemma of analyzing physical activity and sedentary behavior with wrist accelerometer data: challenges and opportunities. J Clin Med. 2021;10:5951. https://doi.org/10.3390/JCM10245951.

Article  PubMed  PubMed Central  Google Scholar 

Clevenger KA, Montoye AHK, Van Camp CA, Strath SJ, Pfeiffer KA. Methods for estimating physical activity and energy expenditure using raw accelerometry data or novel analytical approaches: a repository, framework, and reporting guidelines. Physiol Meas. 2022. https://doi.org/10.1088/1361-6579/ac89c9.

Article  PubMed  Google Scholar 

Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017. https://doi.org/10.1007/s40279-017-0716-0.

Migueles JH, Aadland E, Andersen LB, Brønd JC, Chastin SF, Hansen BH, et al. GRANADA consensus on analytical approaches to assess associations with accelerometer-determined physical behaviours (physical activity, sedentary behaviour and sleep) in epidemiological studies. Br J Sports Med. 2022;56:376–84. https://doi.org/10.1136/BJSPORTS-2020-103604.

Article  PubMed  Google Scholar 

Pulsford RM, Brocklebank L, Fenton SAM, Bakker E, Mielke GI, Tsai L-T, et al. The impact of selected methodological factors on data collection outcomes in observational studies of device-measured physical behaviour in adults: a systematic review. Int J Behav Nutr Phys Act. 2023;20:26. https://doi.org/10.1186/s12966-022-01388-9.

Article  PubMed  PubMed Central  Google Scholar 

Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16:49–56. https://doi.org/10.1111/J.1600-0838.2004.00418.X.

Article  PubMed  Google Scholar 

Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50:1729–56. https://doi.org/10.1007/S40279-020-01322-8.

Article  PubMed  Google Scholar 

Davis JA, Convertino VA. A comparison of heart rate methods for predicting endurance training intensity. Med Sci Sports. 1975;7:295–8. https://doi.org/10.1249/00005768-197500740-00010.

Article  CAS  PubMed  Google Scholar 

American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Philadelphia: Lippincott Williams & Wilkins; 2021. p. 11.

Google Scholar 

Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13:496–502. https://doi.org/10.1016/j.jsams.2009.09.008.

Article  PubMed  Google Scholar 

Laricchia F. Global smartwatch market share 2020–2022. Counterpoint Technology Market Research. 2023.

Fernhall B, Mccubbin JA, Pitetti KH, Rintala P, Rimmer JH, Lynn Millar A, et al. Prediction of maximal heart rate in individuals with mental retardation. Med Sci Sports Exerc. 2001;33:1655–60. https://doi.org/10.1097/00005768-200110000-00007.

Article  CAS  PubMed  Google Scholar 

Lester M, Sheffield LT, Trammell P, Reeves TJ. The effect of age and athletic training on the maximal heart rate during muscular exercise. Am Heart J. 1968;76:370–6. https://doi.org/10.1016/0002-8703(68)90233-0.

Article  CAS  PubMed  Google Scholar 

Miller WC, Wallace JP, Eggert KE. Predicting max HR and the HR-VO2 relationship for exercise prescription in obesity. Med Sci Sports Exerc. 1993;25:1077–81. https://doi.org/10.1249/00005768-199309000-00017.

Article  CAS  PubMed  Google Scholar 

Whyte GP, George K, Shave R, Middleton N, Nevill AM. Training induced changes in maximum heart rate. Int J Sports Med. 2008;29:129–33. https://doi.org/10.1055/S-2007-965783/ID/18.

Article  CAS  PubMed  Google Scholar 

Logan N, Reilly JJ, Grant S, Paton JY. Resting heart rate definition and its effect on apparent levels of physical activity in young children. Med Sci Sports Exerc. 2000;32:162–6. https://doi.org/10.1097/00005768-200001000-00024.

Article  CAS  PubMed  Google Scholar 

Strzelczyk TA, Quigg RJ, Pfeifer PB, Parker MA, Greenland P. Accuracy of estimating exercise prescription intensity in patients with left ventricular systolic dysfunction. J Cardiopulm Rehabil. 2001;21:158–63. https://doi.org/10.1097/00008483-200105000-00007.

Article  CAS  PubMed  Google Scholar 

Goldberg L, Elliot DL, Kuehl KS. Assessment of exercise intensity formulas by use of ventilatory threshold. Chest. 1988;94:95–8. https://doi.org/10.1378/CHEST.94.1.95.

Article  CAS  PubMed  Google Scholar 

Meyer T, Gabriel HHW, Kindermann W. Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med Sci Sports Exerc. 1999;31:1342–5. https://doi.org/10.1097/00005768-199909000-00017.

Article  CAS  PubMed  Google Scholar 

Weltman A, Snead D, Seip R, Schurrer R, Weltman J, Rutt R, et al. Percentages of maximal heart rate, heart rate reserve and VO2max for determining endurance training intensity in male runners. Int J Sports Med. 1990;11:218–22. https://doi.org/10.1055/S-2007-1024795.

Article  CAS  PubMed  Google Scholar 

Hofmann P, Von Duvillard SP, Seibert FJ, Pokan R, Wonisch M, Lemura LM, et al. %HRmax target heart rate is dependent on heart rate performance curve deflection. Med Sci Sports Exerc. 2001;33:1726–31. https://doi.org/10.1097/00005768-200110000-00017.

Article  CAS  PubMed  Google Scholar 

Katch V, Weltman A, Sady S, Freedson P. Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol Occup Physiol. 1978;39:219–27. https://doi.org/10.1007/BF00421445.

Article  CAS  PubMed  Google Scholar 

Sebastian LA, Reeder S, Williams M. Determining target heart rate for exercising in a cardiac rehabilitation program: a retrospective study. J Cardiovasc Nurs. 2015;30:164–71. https://doi.org/10.1097/JCN.0000000000000154.

Article  PubMed  Google Scholar 

Mielke M, Housh TJ, Hendrix RC, Zuniga J, Camic CL, Schmidt RJ, et al. A test for determining critical heart rate using the critical power model. J Strength Cond Res. 2011;25:504–10. https://doi.org/10.1519/JSC.0B013E3181B62C43.

Article  PubMed 

留言 (0)

沒有登入
gif