Which Training Intensity Distribution Intervention will Produce the Greatest Improvements in Maximal Oxygen Uptake and Time-Trial Performance in Endurance Athletes? A Systematic Review and Network Meta-analysis of Individual Participant Data

Fiskerstrand Å, Seiler KS. Training and performance characteristics among Norwegian International Rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303–10.

Article  CAS  PubMed  Google Scholar 

Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):49–56.

Article  PubMed  Google Scholar 

Iannetta D, Inglis EC, Mattu AT, Fontana FY, Pogliaghi S, Keir DA, et al. A critical evaluation of current methods for exercise prescription in women and men. Med Sci Sports Exerc. 2020;52(2):466–73.

Article  PubMed  Google Scholar 

Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50(10):1729–56.

Article  PubMed  Google Scholar 

Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–96.

Article  PubMed  Google Scholar 

Sperlich B, Matzka M, Holmberg H-C. The proportional distribution of training by elite endurance athletes at different intensities during different phases of the season. Front Sports Act Living. 2023;5:1258585.

Article  PubMed  PubMed Central  Google Scholar 

Esteve-Lanao J, Foster C, Seiler S, Lucia A. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21(3):943–9.

PubMed  Google Scholar 

Muñoz I, Seiler S, Bautista J, Espana J, Larumbe E, Esteve-Lanao J. Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform. 2014;9(2):265–72.

Article  PubMed  Google Scholar 

Neal CM, Hunter AM, Brennan L, O’Sullivan A, Hamilton DL, De Vito G, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114(4):461–71.

Article  CAS  PubMed  Google Scholar 

Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33.

Article  PubMed  PubMed Central  Google Scholar 

Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295.

Article  PubMed  PubMed Central  Google Scholar 

Cohn LD, Becker BJ. How meta-analysis increases statistical power. Psychol Methods. 2003;8(3):243–53.

Article  PubMed  Google Scholar 

Rosenblat MA, Perrotta AS, Vicenzino B. Polarized vs. threshold training intensity distribution on endurance sport performance: a systematic review and meta-analysis of randomized controlled trials. J Strength Cond Res. 2019;33(12):3491–500.

Article  PubMed  Google Scholar 

Enoksen E, Tjelta AR, Tjelta LI. Distribution of training volume and intensity of elite male and female track and marathon runners. Int J Sports Sci Coach. 2011;6(2):273–94.

Article  Google Scholar 

Muñoz I, Cejuela R, Seiler S, Larumbe E, Esteve-Lanao J. Training-intensity distribution during an ironman season: relationship with competition performance. Int J Sports Physiol Perform. 2014;9(2):332–9.

Article  PubMed  Google Scholar 

Neal CM, Hunter AM, Galloway SD. A 6-month analysis of training-intensity distribution and physiological adaptation in Ironman triathletes. J Sports Sci. 2011;29(14):1515–23.

Article  PubMed  Google Scholar 

Tjelta LI, Enoksen E. Training characteristics of male junior cross country and track runners on European top level. Int J Sports Sci Coach. 2010;5(2):193–203.

Article  Google Scholar 

Billat VL, Demarle A, Slawinski J, Paiva M, Koralsztein JP. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc. 2001;33(12):2089–97.

Article  CAS  PubMed  Google Scholar 

Kenneally M, Casado A, Gomez-Ezeiza J, Santos-Concejero J. Training intensity distribution analysis by race pace vs. physiological approach in world-class middle- and long-distance runners. Eur J Sport Sci. 2021;21(6):819–26.

van Erp T, Sanders D, de Koning JJ. Training characteristics of male and female professional road cyclists: a 4-year retrospective analysis. Int J Sports Physiol Perform. 2020;15(4):534–40.

Article  PubMed  Google Scholar 

Ieno C, Baldassarre R, Pennacchi M, La Torre A, Bonifazi M, Piacentini MF. Monitoring rating of perceived exertion time in zone: a novel method to quantify training load in elite open-water swimmers? Int J Sports Physiol Perform. 2021;16(10):1551–5.

Article  PubMed  Google Scholar 

Sylta Ø, Tønnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100–7.

Article  PubMed  Google Scholar 

Silva Oliveira P, Boppre G, Fonseca H. Comparison of polarized versus other types of endurance training intensity distribution on athlete' endurance performance: a systematic review with meta-analysis. Sports Med. 2024;54(8):2071–95.

Article  PubMed  PubMed Central  Google Scholar 

Watt J, Tricco AC, Straus S, Veroniki AA, Naglie G, Drucker AM. Research techniques made simple: network meta-analysis. J Invest Dermatol. 2019;139(1):4–12.

Article  CAS  PubMed  Google Scholar 

Treff G, Winkert K, Sareban M, Steinacker JM, Becker M, Sperlich B. Eleven-week preparation involving polarized intensity distribution is not superior to pyramidal distribution in national elite rowers. Front Physiol. 2017;8:515.

Article  PubMed  PubMed Central  Google Scholar 

Barnett AG, van der Pols JC, Dobson AJ. Regression to the mean: what it is and how to deal with it. Int J Epidemiol. 2005;34(1):215–20.

Article  PubMed  Google Scholar 

Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI, Anti-Lymphocyte Antibody Induction Therapy Study Group. Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med. 2002;21(3):371–87.

Article  PubMed  Google Scholar 

Riley RD, Debray TPA, Fisher D, Hattle M, Marlin N, Hoogland J, et al. Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: Statistical recommendations for conduct and planning. Stat Med. 2020;39(15):2115–37.

Article  PubMed  PubMed Central  Google Scholar 

Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.

Article  PubMed  Google Scholar 

Rosenblat MA, Lin E, da Costa BR, Thomas SG. Programming interval training to optimize time-trial performance: a systematic review and meta-analysis. Sports Med. 2021;51(8):1687–714.

Article  PubMed  Google Scholar 

Rosenblat MA, Arnold J, Nelson H, Watt J, Seiler S. The additional effect of training above the maximal metabolic steady state on VO2peak, Wpeak and time-trial performance in endurance-trained athletes: a systematic review, meta-analysis, and reality check. Sports Med. 2024;54(2):429–46.

Article  PubMed  Google Scholar 

McKay AK, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2021;17(2):317–31.

Article  Google Scholar 

Treff G, Winkert K, Sareban M, Steinacker JM, Sperlich B. The polarization-index: a simple calculation to distinguish polarized from non-polarized training intensity distributions. Front Physiol. 2019;10:707.

Article  PubMed  PubMed Central  Google Scholar 

Sterne JA, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366: l4898.

Article  PubMed  Google Scholar 

Hedges L, Olkin I. Statistical methods for meta-analysis. New York: Academic Press; 1981.

Google Scholar 

R Core Team. R: A Language and Environment for Statistical Computing. 4.3.3 ed. Vienna, Austria: R Foundation for Statistical Computing; 2024.

Balduzzi S, Rücker G, Nikolakopoulou A, Papa

留言 (0)

沒有登入
gif