Maniar N, Verhagen E, Bryant AL, Opar DA. Trends in Australian knee injury rates: an epidemiological analysis of 228,344 knee injuries over 20 years. Lancet Reg Health West Pac [Internet]. 2022;21:100409.
Article PubMed PubMed Central Google Scholar
Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016;44(6):1502–7.
Weitz FK, Sillanpää PJ, Mattila VM. The incidence of paediatric ACL injury is increasing in Finland. Knee Surg Sports Traumatol Arthrosc. 2020;28(2):363–8.
Mather 3rd RC, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Jt Surg Am [Internet]. 2013;95(19):1751–9. https://pubmed.ncbi.nlm.nih.gov/24088967.
Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.
Price AJ, Alvand A, Troelsen A, Katz JN, Hooper G, Gray A, et al. Knee replacement. Lancet (London, England). 2018;392(10158):1672–82.
Dutaillis B, Maniar N, Opar DA, Hickey JT, Timmins RG. Lower limb muscle size after anterior cruciate ligament injury: a systematic review and meta-analysis. Sports Med (Auckl, N Z). 2021;51:1209–26.
Yasuda K, Ohkoshi Y, Tanabe Y, Kaneda K. Muscle weakness after anterior cruciate ligament reconstruction using patellar and quadriceps tendons. Bull Hosp Jt Dis Orthop Inst. 1991;51(2):175–85.
Filbay SR, Ackerman IN, Russell TG, Crossley KM. Return to sport matters-longer-term quality of life after ACL reconstruction in people with knee difficulties. Scand J Med Sci Sports. 2017;27(5):514–24.
Article CAS PubMed Google Scholar
Lim C, Nunes EA, Currier BS, McLeod JC, Thomas ACQ, Phillips SM. An evidence-based narrative review of mechanisms of resistance exercise-induced human skeletal muscle hypertrophy. Med Sci Sports Exerc. 2022;54(9):1546–59.
Article CAS PubMed PubMed Central Google Scholar
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, et al. Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res. 2021;172: 105807.
Article CAS PubMed Google Scholar
Sonnery-Cottet B, Saithna A, Quelard B, Daggett M, Borade A, Ouanezar H, et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med [Internet]. 2019;53(5):289 LP–298. http://bjsm.bmj.com/content/53/5/289.abstract.
Urbach D, Nebelung W, Weiler HT, Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31(12):1691–6.
Article CAS PubMed Google Scholar
Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40(3):250–66.
McPherson AL, Schilaty ND, Anderson S, Nagai T, Bates NA. Arthrogenic muscle inhibition after anterior cruciate ligament injury: injured and uninjured limb recovery over time. Front Sport Act Living [Internet]. 2023. https://doi.org/10.3389/fspor.2023.1143376.
Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.
Bodine SC. Disuse-induced muscle wasting. Int J Biochem Cell Biol. 2013;45(10):2200–8.
Article CAS PubMed Google Scholar
Rosa-Caldwell ME, Lim S, Haynie WS, Jansen LT, Westervelt LC, Amos MG, et al. Altering aspects of mitochondrial quality to improve musculoskeletal outcomes in disuse atrophy. J Appl Physiol. 2020;129(6):1290–303.
Article CAS PubMed PubMed Central Google Scholar
Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25–39.
Article CAS PubMed PubMed Central Google Scholar
Owen PJ, Armbrecht G, Bansmann M, Zange J, Pohle-Fröhlich R, Felsenberg D, et al. Whey protein supplementation with vibration exercise ameliorates lumbar paraspinal muscle atrophy in prolonged bed rest. J Appl Physiol. 2020;128(6):1568–78.
Article CAS PubMed Google Scholar
Howard EE, Pasiakos SM, Fussell MA, Rodriguez NR. Skeletal muscle disuse atrophy and the rehabilitative role of protein in recovery from musculoskeletal injury. Adv Nutr. 2020;11(4):989–1001.
Article PubMed PubMed Central Google Scholar
Magne H, Savary-Auzeloux I, Rémond D, Dardevet D. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev. 2013;26(2):149–65.
Article CAS PubMed Google Scholar
Laskowski ER. ACL injury and rehabilitation. Curr Phys Med Rehabil Rep [Internet]. 2014;2(1):35–40. https://doi.org/10.1007/s40141-013-0036-8.
Flosadottir V, Roos EM, Ageberg E. Muscle function is associated with future patient-reported outcomes in young adults with ACL injury. BMJ Open Sport Exerc Med [Internet]. 2016;2(1):e000154. http://bmjopensem.bmj.com/content/2/1/e000154.abstract.
Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.
Article PubMed PubMed Central Google Scholar
Filbay SR, Grindem H. Evidence-based recommendations for the management of anterior cruciate ligament (ACL) rupture. Best Pract Res Clin Rheumatol. 2019;33(1):33–47.
Article PubMed PubMed Central Google Scholar
Tsoukas D, Fotopoulos V, Basdekis G, Makridis KG. No difference in osteoarthritis after surgical and non-surgical treatment of ACL-injured knees after 10 years. Knee Surg Sport Traumatol Arthrosc [Internet]. 2016;24(9):2953–9. https://doi.org/10.1007/s00167-015-3593-9.
Grindem H, Eitzen I, Engebretsen L, Snyder-Mackler L, Risberg MA. Nonsurgical or surgical treatment of acl injuries: knee function, sports participation, and knee reinjury: the Delaware-Oslo ACL cohort study. JBJS [Internet]. 2014;96(15). https://journals.lww.com/jbjsjournal/fulltext/2014/08060/nonsurgical_or_surgical_treatment_of_acl_injuries_.1.aspx.
Widner M, Dunleavy M, Lynch S. Outcomes following ACL reconstruction based on graft type: are all grafts equivalent? Curr Rev Musculoskelet Med [Internet]. 2019;12(4):460–5. https://doi.org/10.1007/s12178-019-09588-w.
Article PubMed PubMed Central Google Scholar
Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405–24, vii–ix.
Wilk KE, Arrigo CA. Preoperative phase in the rehabilitation of the patient undergoing anterior cruciate ligament reconstruction. Oper Tech Sports Med [Internet]. 2016;24(1):12–20.
Buckthorpe M, Della VF. Optimising the “mid-stage” training and testing process after ACL reconstruction. Sports Med. 2020;50(4):657–78.
Myer GD, Paterno MV, Ford KR, Quatman CE, Hewett TE. Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther. 2006;36(6):385–402.
Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil [Internet]. 2000;9(2):135–59. https://journals.humankinetics.com/view/journals/jsr/9/2/article-p135.xml.
Lepley LK, Davi SM, Burland JP, Lepley AS. Muscle atrophy after ACL injury: implications for clinical practice. Sports Health. 2020;12(6):579–86.
Article PubMed PubMed Central Google Scholar
Demling RH. Nutrition, anabolism, and the wound healing process: an overview. Eplasty. 2009;9: e9.
PubMed PubMed Central Google Scholar
Gillis C, Carli F. Promoting perioperative metabolic and nutritional care. Anesthesiology. 2015;123(6):1455–72.
留言 (0)