Abdominal and Pelvic MRI Protocol Prediction Using Natural Language Processing

Eberhard M, Alkadhi H. Machine learning and deep neural networks: applications in patient and scan preparation, contrast medium, and radiation dose optimization. Journal of Thoracic Imaging 2020;35:S17-S20.

Article  PubMed  Google Scholar 

Kalra A, Chakraborty A, Fine B, Reicher J. Machine learning for automation of radiology protocols for quality and efficiency improvement. Journal of the American College of Radiology 2020;17(9):1149-1158.

Article  PubMed  Google Scholar 

Lakhani P, Prater AB, Hutson RK, Andriole KP, Dreyer KJ, Morey J, Prevedello LM, Clark TJ, Geis JR, Itri JN. Machine learning in radiology: applications beyond image interpretation. Journal of the American College of Radiology 2018;15(2):350-359.

Article  PubMed  Google Scholar 

Pierre K, Haneberg AG, Kwak S, Peters KR, Hochhegger B, Sananmuang T, Tunlayadechanont P, Tighe PJ, Mancuso A, Forghani R. Applications of Artificial Intelligence in the Radiology Roundtrip: Process Streamlining, Workflow Optimization, and Beyond. Seminars in Roentgenology 2023;58(2):158–169.

Raju N, Woodburn M, Kachel S, O'Shaughnessy J, Sorace L, Yang N, Lim RP. A Review of Published Machine Learning Natural Language Processing Applications for Protocolling Radiology Imaging. arXiv preprint arXiv:220611502 2022.

Sandino CM, Cole EK, Alkan C, Chaudhari AS, Loening AM, Hyun D, Dahl J, Wang AS, Vasanawala SS. Upstream machine learning in radiology. Radiologic Clinics 2021;59(6):967-985.

PubMed  Google Scholar 

Brown AD, Marotta TR. A natural language processing-based model to automate MRI brain protocol selection and prioritization. Academic Radiology 2017;24(2):160-166.

Article  PubMed  Google Scholar 

Brown AD, Marotta TR. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. Journal of the American Medical Informatics Association 2018;25(5):568-571.

Article  PubMed  Google Scholar 

Chillakuru YR, Munjal S, Laguna B, Chen TL, Chaudhari GR, Vu T, Seo Y, Narvid J, Sohn JH. Development and web deployment of an automated neuroradiology MRI protocoling tool with natural language processing. BMC medical informatics and decision making 2021;21(1):1-10.

Article  Google Scholar 

Cronister C, Issa TB, Uminsky D, Filice RW. Protocol Selection of Advanced Imaging Exams using Multi-steps Deep Learning Models. Open Science Index 2022;16(2);346–353.

Lau W, Aaltonen L, Gunn M, Yetisgen M. Automatic Assignment of Radiology Examination Protocols Using Pre-trained Language Models with Knowledge Distillation. AMIA Annu Symp Proc 2021;2021:668–676.

PubMed  Google Scholar 

Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. Journal of digital imaging 2018;31:604-610.

Article  PubMed  PubMed Central  Google Scholar 

López-Úbeda P, Díaz-Galiano MC, Martín-Noguerol T, Luna A, Ureña-López LA, Martín-Valdivia MT. Automatic medical protocol classification using machine learning approaches. Computer Methods and Programs in Biomedicine 2021;200:105939.

Article  PubMed  Google Scholar 

Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. Journal of Digital Imaging 2018;31:245–251.

Article  PubMed  Google Scholar 

Yao J, Alabousi A, Mironov O. Evaluation of a BERT Natural Language Processing Model for Automating CT and MRI Triage and Protocol Selection. Canadian Association of Radiologists Journal 2024;0(0):1–8. https://doi.org/10.1177/08465371241255895

Eghbali N, Siegal D, Klochko C, Ghassemi MM. Automation of Protocoling Advanced MSK Examinations Using Natural Language Processing Techniques. AMIA Summits on Translational Science Proceedings 2023;2023:118–127.

Talebi S, Tong E, Li A, Yamin G, Zaharchuk G, Mofrad MRK. Exploring the performance and explainability of fine-tuned BERT models for neuroradiology protocol assignment. BMC Medical Informatics Decision Making 2024;24(40):1-12.

Google Scholar 

Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805 2018. https://doi.org/10.1007/s10278-024-01128-4

Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A. Language models are few-shot learners. Advances in neural information processing systems 2020;33:1877-1901.

Google Scholar 

Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language understanding by generative pre-training. OpenAI 2018.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI blog 2019;1(8):9.

Google Scholar 

Peng Y, Yan S, Lu Z. Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. Proceedings of the Conference of Association for Computational Linguistics 2019;58–65.

留言 (0)

沒有登入
gif