AI-Driven Radiology Report Generation for Traumatic Brain Injuries

Bieder, F., et al.: Memory-efficient 3d denoising diffusion models for medical image processing. In: Proceedings of Machine Learning Research. vol. 227, pp. 552–567 (2023)

Ciesla, J., Smith, R.: Ai and chatbots in radiology education: Supporting diagnostic training. Journal of Radiology Education 12(1), 45–56 (2024)

Durrer, A., et al.: Memory-efficient 3d denoising diffusion models for medical image processing. In: Medical Imaging with Deep Learning (2024)

Guo, C., et al.: Cmt: Convolutional modulated transformer for medical image segmentation and analysis. Journal of Medical Systems 46(3),  52 (2022)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). pp. 770–778 (2016)

Karakas, M.e.a.: Deep learning-based mri brain lesion segmentation using convolutional neural networks. In: Proceedings of the 3rd International Conference on Computer Science and Engineering (UBMK). pp. 342–347 (2018). https://doi.org/10.1109/UBMK.2018.8566380

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. International Conference on Learning Representations (ICLR) (2015)

Li, M.: Automated radiology report generation: A review of recent advances. CV-Surveys (2024), available at: https://github.com/52CV/CV-Surveys

Li, M., et al.: Radiology report generation based on multi-institution and multi-system data. Papers with Code (2024), available at: https://paperswithcode.com/author/ming-li

Li, W., et al.: Cross-modal memory transformer for radiology report generation with multimodal fusion. Nature Machine Intelligence 5, 512–523 (2023)

Li, W., et al.: Cross-modal memory transformer for radiology report generation with multimodal fusion. Nature Machine Intelligence 5, 512–523 (2023)

Liang, J.e.a.: Transfer learning for brain tumor detection using convolutional neural networks. Medical Image Analysis 61, 101654 (2019)

Liang, T., Chen, Q., Liu, Z.: Semi-supervised learning for radiology report generation with incomplete data using transfer learning and inpainting techniques. Medical Image Analysis 76, 102353 (2023)

de Lima, R.M., Santos, A., Neto, F.M.M., de Sousa, F., Neto, A., Leão, F.C.P., de Macedo, F.T., Canuto, A.M.P.: Ai in medical education: Global situation, effects, and challenges. Education and Information Technologies (2023). https://doi.org/10.1007/s10639-022-11111-8, https://link.springer.com/article/10.1007/s10639-022-11111-8

Locke, J., Rivera, P., Wang, G.: Natural language processing in multi-agent chatbots for personalized learning in medicine. Journal of Medical Education 26(4), 245–258 (2021)

Locke, J., Rivera, P., Wang, G.: Natural language processing in multi-agent chatbots for personalized learning in medicine. Journal of Medical Education 26(4), 245–258 (2021)

of North America, R.S.: Rsna intracranial hemorrhage detection challenge. https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection (2019), rSNA 2019 Challenge

Parres, A., et al.: Clr2g: Cross-modal contrastive learning on radiology report generation. In: CIKM (2024), available at: https://cikm2024.org/accepted-papers/

Parres, D., et al.: Improving radiology report generation quality and diversity through reinforcement learning and text augmentation. Bioengineering 11(4),  351 (2024)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library (2019). https://arxiv.org/abs/1912.01703

Prabhakar, C., et al.: Vit-ae++: Improving vision transformer autoencoder for self-supervised medical image representations. In: Medical Imaging with Deep Learning (2024)

Qin, Y., Song, Y.: Cross-modal alignment for improving radiology report generation. IEEE Transactions on Neural Networks and Learning Systems 33(1), 200–211 (2022)

Ramesh, S., et al.: Improving radiology report generation by filtering irrelevant descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

Singh, S.: Clinical context-aware radiology report generation from medical images using transformers. ArXiv preprint (2024), https://arxiv.org/abs/2408.11344v1

Suarez, M.e.a.: Integrating attention mechanisms with convolutional networks for multimodal medical data. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI). pp. 765–770 (2021)

Sun, H., et al.: Handling unseen abnormalities in radiology reports by aligning visual and semantic features. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2022)

Sun, Y., et al.: Continually tuning a large language model for multi-domain radiology report generation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2024), available at: https://conferences.miccai.org/2024/files/downloads/MICCAI2024-Accepted-paper-slotting.pdf

Szczykutowicz, T., Garza, G.: A review of deep learning applications in brain lesion detection. Medical Image Analysis 75, 102–114 (2022)

Tang, M., Liu, Y., Wu, J.: Multimodal approach to automated neurological report generation integrating eeg and mri. IEEE Transactions on Medical Imaging 42(4), 789–798 (2023)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30, 5998–6008 (2017)

Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show, attend and tell: Neural image caption generation with visual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3156–3164 (2015)

Wang, A., et al.: Task-aware frameworks for improving radiology report generation by aligning clinical data and imaging modalities. IEEE Transactions on Medical Imaging (2022)

Wang, A.N., et al.: Task-aware frameworks for improving radiology report generation by aligning clinical data and imaging modalities (2022)

Wang, L., Liu, F., Zhao, H.: Cross-modal fusion techniques for robust medical image segmentation with missing modalities. IEEE Transactions on Medical Imaging 41(12), 3281–3290 (2022)

Wang, Y., et al.: Grouping anatomical sections for enhancing radiology report accuracy. Computer Methods in Biomechanics and Biomedical Engineering 25(4), 456–466 (2022)

Xu, L., Zhang, W., Zhou, J.: Multimodal transformer for pulmonary disease radiology report generation. Journal of Medical Imaging and Health Informatics 13(2), 123–132 (2023)

Yan, S., et al.: Ahive: Anatomy-aware hierarchical vision encoding for interactive radiology report retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 14324–14333 (2024)

Zhang, X., Wang, Y., Li, Z.: Semi-supervised medical report generation using graph-guided hybrid feature consistency. Journal of Medical Imaging and Health Informatics 13(5), 1104–1116 (2023)

Zhao, Q., Yang, J., Pei, Y.: A comprehensive review on synergy of multi-modal data and ai technologies in medical diagnosis. Bioengineering 11(3),  219 (2024). https://doi.org/10.3390/bioengineering11030219, https://www.mdpi.com/2079-9268/11/3/219

Zhao, Z., Liu, T., Wang, F.: Memory-driven networks for radiology report generation with missing modalities. IEEE Transactions on Medical Imaging 40(9), 2410–2420 (2021)

留言 (0)

沒有登入
gif