Liu S: Symmetry and asymmetry analysis and its implications to computer-aided diagnosis: A review of the literature, Journal of biomedical informatics, vol. 42, pp. 1056–64, 08 2009.
Rehman H, Lee S: An efficient automatic midsagittal plane extraction in brain MRI, Applied Sciences, vol. 8, p. 2203, 11 2018.
Liu R, Li S, Su B, Tan C.L, Leong T.-Y, Pang B, Lim T, Lee C: Automatic detection and quantification of brain midline shift using anatomic marker model, Computerized Medical Imaging and Graphics, vol. 38, 12 2013.
Qi X, Belle A, Shandilya S, Chen W, Cockrell C, Tang Y, Ward K, Hargraves R, Najarian K: Ideal midline detection using automated processing of brain CT image, Open Journal of Medical Imaging, vol. 03, pp. 51–59, 01 2013.
Pisov M, Goncharov M, Kurochkina N, Morozov S, Gombolevskiy V, Chernina V, Vladzymyrskyy A, Zamyatina K, Chesnokova A, Pronin I, Shifrin M, Belyaev M: Incorporating task-specific structural knowledge into CNN’s for brain midline shift detection. Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support: Second International Workshop, IMIMIC 2019, and 9th International Workshop, ML- CDS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings, (Berlin, Heidelberg), p. 30–38, Springer-Verlag, 2019.
Liao C.-C, Chen Y.-F, Xiao F: Brain midline shift measurement and its automation: A review of techniques and algorithms. International Journal of Biomedical Imaging, vol. 2018, pp. 1–13, 04 2018.
Chawla M, Sharma S, Sivaswamy J, Kishore L: A method for automatic detection and classification of stroke from brain CT images. Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, vol. 2009, pp. 3581–4, 09 2009.
Matesin M, Loncaric S, and Petravi´c D: A rule-based approach to stroke lesion analysis from CT brain images. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, 2001. ISPA 2001, pp. 219 – 223, 02 2001.
Peter R, Korfiatis P, Blezek D, Beita A, Stepan-Buksakowska I, Horinek D, Flemming K. D, Erickson B.J: A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in non- contrast computed tomography. Medical physics, vol. 44, pp. 192–199, 01 2017.
Vupputuri A, Ashwal S, Tsao B, Ghosh N: Ischemic stroke segmentation in multi-sequence MRI by symmetry determined super- pixel based hierarchical clustering. Computers in Biology and Medicine, vol. 116, p. 103536, 11 2019.
Pexman J, Barber P, Hill M, Sevick R, Demchuk A, Hudon M, Hu W, Buchan A: Use of the Alberta stroke program early CT score (aspects) for assessing CT scans in patients with acute stroke. AJNR. American journal of neuroradiology, vol. 22, pp. 1534–42, 10 2001.
Pop N, Tit, D. M, Diaconu C, Munteanu M, Babes E, Stoicescu M, Popescu M, Bungau S: The Alberta stroke program early CT score (Aspects): A predictor of mortality in acute ischemic stroke. Experimental and Therapeutic Medicine, vol. 21, p. 1371, 09 2021.
Kuang H, Menon B, Sohn S.-I, Qiu W: Eis-net: Segmenting early infarct and scoring Aspects simultaneously on non-contrast CT of patients with acute ischemic stroke,” Medical Image Analysis, 02 2021.
Cao Z, Xu J, Song B, Chen L, Sun T, He Y, Wei Y, Niu G, Zhang Y, Feng Q, Ding Z, Shi F: Deep learning derived automated Aspects on non-contrast CT scans of acute ischemic stroke patients. Human Brain Mapping, vol. 43, 03 2022.
Palanisamy K, Senthamilselvi M, Prasath S: Review of computational methods on brain symmetric and asymmetric analysis from neuroimaging techniques. Technologies, vol. 5, p. 16, 04 2017.
Prima S, Ourselin S, Ayache N: Computation of the mid-sagittal plane in 3d images of the brain. vol. 1843, pp. 685–701, 01 2000.
Przelaskowski A, Sobieszczuk E, Jo´´zwiak R, Z˙ ycka Malesa D, Mykhalevych I, Sklinda K, Sobkowicz A: Integrated System for Clinical Decision Support in Emergency Stroke Care, pp. 457–473. 01 2016.
Ardekani B, Kershaw J, Braun M, Kanno I: Automatic detection of mid-sagittal plane in 3d brain images. IEEE transactions on medical imaging, vol. 16, pp. 947–52, 12 1997.
Teverovskiy L, Liu Y: Truly 3d midsagittal plane extraction for robust neuroimage registration. 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings, vol. 2006, 04 2004.
Ruppert G, Teverovskiy L, Yu C.-P, Falca˜o A, Liu Y: A new symmetry-based method for mid-sagittal plane extraction in neuroimages. pp. 285–288, 03 2011.
Liu Y, Collins R, Rothfus W: Robust midsagittal plane extraction from normal and pathological 3-d neuroradiology images. Medical Imaging, IEEE Transactions on, vol. 20, pp. 175 – 192, 04 2001.
Liao C.-C, Xiao F, Wong J.-M, Chiang I.-J: Automatic recognition of midline shift on brain CT images. Computers in biology and medicine, vol. 40, pp. 331–9, 03 2010.
Volkau I, Prakash K. B, Ananthasubramaniam A, Aziz A, Nowinski W. L: Extraction of the midsagittal plane from morphological neuroimages using the Kullback–Leibler’s measure. Medical Image Analysis, vol. 10, no. 6, pp. 863 – 874, 2006.
Puspitasari F, Volkau I, Ambrosius W, Nowinski W: Robust calculation of the midsagittal plane in CT scans using the Kullback–Leibler’s measure,” International journal of computer assisted radiology and surgery, vol. 4, pp. 535–47, 11 2009.
Grigaitis D, Meilunas M: Automatic extraction of symmetry plane from falx cerebri areas in CT slices. Bildverarbeitung für die Medizin 2007, Springer Berlin Heidelberg, pp. 267–271, 01 2007.
Chen W, Smith R, Ji S.-Y, Ward K, Najarian K: Automated ventricular systems segmentation in brain CT images by combining low- level segmentation and high-level template matching. BMC medical informatics and decision making, vol. 9 Suppl 1, p. S4, 11 2009.
Yan J.-L, Chen Y.-L, Chen M.-Y, Chen B.-A, Chang J.-X. Kao C.-C, Hsieh M.-C, Peng Y.-T, Huang K.-C, Chen P.-Y: A robust, fully automatic detection method and calculation technique of midline shift in intracranial hemorrhage and its clinical application. Diagnostics, vol. 12, p. 693, 03 2022.
Zanolini U, Austein F, Fiehler J, McDonough R, Rai H, Siddiqui A, Shotar E, A. Rouchaud, M. Goyal, Kallmes K, Siemonsen S, Bechstein M: Midline shift in chronic subdural hematoma. Clinical Neuroradiology, vol. 32, pp. 1–8, 04 2022.
Nguyen N, Yoo Y, Chekkoury A, Eibenberger E, Re T, Das J, Balachandran A, Lui Y, Sanelli P, Schroeppel T, Bodanapally U, Nicolaou S, White T, Bunyak F, Comaniciu D, Gibson E, Zucker B: Brain midline shift detection and quantification by a cascaded deep network pipeline on non-contrast computed tomography scans,” 11 2021.
Chen W, Belle A, Cockrell C, Ward K, Najarian K: Automated midline shift and intracranial pressure estimation based on brain CT images. Journal of visualized experiments: JoVE, 04 2013.
Gibicar A, Moody A, Khademi A: Automated midline estimation for symmetry analysis of cerebral hemispheres in flair MRI. Frontiers in Aging Neuroscience, vol. 13, 04 2021.
Hajimani E, Ruano M, Ruano A, “An intelligent support system for automatic detection of cerebral vascular accidents from brain CT images. Computer Methods and Programs in Biomedicine, vol. 146, 05 2017.
Cl`erigues A, Valverde S, Bernal J, Freixenet J, Oliver A, Llado X: Acute and subacute stroke lesion segmentation from multimodal MRI. Computer Methods and Programs in Biomedicine, vol. 194, p. 105521, 05 2020.
Agrawal D, Joshi S, Poonamallee L: Automated midline shift detection and quantification in traumatic brain injury: A comprehensive review. Indian Journal of Neurotrauma, 01 2024.
Nag M: “Quantitative analysis of brain herneation from non-contrast CT using deep learning. Journal of Neuroscience Methods, vol. 349, 12 2020.
Hounsfield G: Computed medical imaging – nobel lecture, december 8, 1979. Journal of computer assisted tomography, vol. 4, pp. 665–74, 11 1980.
Deok Won Y, Na M, Kim C, Min et al: The frontal skull Hounsfield unit value can predict ventricular enlargement in patients with subarachnoid haemorrhage,” Scientific Reports, vol. 8, p. 10178, 07 2018.
Soille P: Morphological image analysis : Principles and applications. Springer, pp. 173–174, 1999.
Canny J: A computation approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, pp. 769–798, 01 1986.
MATLAB, version 9.8.0 (R2020a). Natick, Massachusetts: The Math- Works Inc., 2020.
Chan T: Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain. Computerized medical imaging and graphics: the official journal of the Computerized Medical Imaging Society, vol. 31, pp. 285–98, 06 2007.
Fahmi F, Kemala Nasution I, Sawaluddin: Automated midline setting for brain image analysis to detect intracerebral hemorrhage. Journal of Physics: Conference Series, vol. 1566, p. 012011, 06 2020.
Li L, Wei M, Liu B, Atchaneeyasakul K, Zhou F, Pan Z, Kumar S, Zhang J, Pu Y, Liebeskind D, Scalzo F: Deep learning for hemorrhagic lesion detection and segmentation on brain CT images. IEEE journal of biomedical and health informatics, vol. PP, 10 2020.
Prasad I, Chaudhary L: Intracranial hemorrhage detection and segmentation. 05 2020. https://doi.org/10.13140/RG.2.2.24201.67680.
Hssayeni M.D, Croock M.S, Salman A. D, Al-khafaji H. F, Yahya Z. A, Behnaz G: Intracranial hemorrhage segmentation using a deep convolutional model. Data, vol. 1, 05 2020.
Schneider C, Rasband W, Eliceiri K: “NIH image to imageJ: 25 years of image analysis. Nature Methods, vol. 9, 07 2012.
Chen W, Najarian K, Ward K: Actual midline estimation from brain CT scan using multiple regions shape matching. pp. 2552–2555, 08 2010.
McKeown M, Prasad A, Kobsa J, Top I, Snider S, Kidwell C, Campbell B, Davis S, Donnan G, Lev M, Sheth K, Petersen N, Kimberly W, Bevers M: Midline shift greater than 3 mm independently predicts outcome after ischemic stroke. Neurocritical Care, 09 2021.
Hu Q, Nowinski W: A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal. NeuroImage, vol. 20, pp. 2153–65, 01 2004.
Wu H, Wang D, Shi L, Wen Z, Ming Z: Midsagittal plane extraction from brain images based on 3d sift. Physics in medicine and biology, vol. 59, pp. 1367–1387, 02 2014.
Zhou W, Qin C, Chang J.-B, Liu Y, Chen Y, Feng M, Wang R, Yang W, Yao J: Standardized measurement of mid-surface shift of brain based on deep Hough transform. Computerized Medical Imaging and Graphics, vol. 108, p. 102284, 08 2023.
Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau N, Venugopal V, Mahajan V, Rao P, Warier P: Development and validation of deep learning algorithms for detection of critical findings in head CT scans. 03 2018.
Perone C, Cohen-Adad J: Promises and limitations of deep learning for medical image segmentation. Journal of Medical Artificial Intelligence, vol. 2, pp. 1–1, 01 2019.
Dhar T, Dey N, Borra S, Sherratt R: Challenges of deep learning in medical image analysis improving explainability and trust. IEEE Transactions on Technology and Society, vol. PP, pp. 1–1, 03 2023.
Leng T, Xiong Z.-G: Treatment for ischemic stroke: From thrombolysis to thrombectomy and remaining challenges. Brain circulation, vol.5, pp.8–11, 01 2019.
留言 (0)