Denoising Multi-Level Cross-Attention and Contrastive Learning for Chest Radiology Report Generation

Jing B, Xie P, Xing E: On the automatic generation of medical imaging reports. In Association for Computational Linguistics (ACL), Melbourne: Australia, 1:2577–2586, 2018

Li Y, Liang X, Hu Z, Xing E: Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation. In Neural information processing systems foundation, Montreal: Canada, 31, 2018

Wang Z, Zhou L, Wang L, Li X: A self-boosting framework for automated radiographic report generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville: USA, 2433–2442, 2021

Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks. Commun ACM, 60(6):84-90, 2017

Article  Google Scholar 

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N: AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. In 9th International Conference on Learning Representations, ICLR 2021, May 3, 2021- May 7, 2021, Virtual: Online, 2021

Liang X, Hu Z, Zhang H, Gan C, Xing E: Recurrent Topic-Transition GAN for Visual Paragraph Generation. In Proceedings of the IEEE international conference on computer vision, Venice: Italy, 3362–3371, 2017

Gajbhiye G, Nandedkar A, Faye I: Automatic report generation for chest X-Ray images: A multilevel multi-attention approach. In Computer Vision and Image Processing: 4th International Conference, CVIP 2019, Jaipur: India, 174–182, 2020

Zhang Z, Xie Y, Xing F, McGough M, Yang L: MDNet: A semantically and visually interpretable medical image diagnosis network. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu: United states, 6428–6436, 2017

Jing B, Wang Z, Xing E: Show, describe and conclude: On exploiting the structure information of chest X-ray reports. In 57th Annual Meeting of the Association for Computational Linguistics, ACL 2019, July 28, 2019 - August 2, 2019, Florence: ltaly, 6570–6580, 2019

Wang Z, Tang M, Wang L, Li X, Zhou L: A medical semantic-assisted transformer for radiographic report generation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer Nature Switzerland, 655–664, 2022

Gale W, Oakden-Rayner L, Carneiro G, Palmer L, Bradley A: Producing radiologist-quality reports for interpretable deep learning. In IEEE Computer Society, Venice: Italy, 1275–1279, 2019

Zhang Y, Wang X, Xu Z, Yu Q, Yuille A, Xu D: When radiology report generation meets knowledge graph. In Proceedings of the AAAI conference on artificial intelligence, New York: NY, 34(07):12910-12917, 2020

Nooralahzadeh F, Gonzalez N, Frauenfelder T, Fujimoto K, Krauthammer M: Progressive transformer-based generation of radiology reports. In 2021 Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021, November 7, 2021 - November 11, 2021, Punta Cana: Dominican republic, 2824-2832, 2021

Aksoy N, Ravikumar N, Frangi A: Radiology report generation using transformers conditioned with non-imaging data. In Medical Imaging 2023: Imaging Informatics for Healthcare, San Diego: United states, 86:146-153, 2023

Wang ZH, Li ML, Xu RC, Zhou L, Lei J, Lin XD, Wang SH, Yang Z, Zhu CG, Hoiem D, Chang S-F, Bansal M, Ji H: Language models with image descriptors are strong few-shot video-language learners. In 36th Conference on Neural Information Processing Systems, NeurIPS 2022, November 28, 2022 - December 9, 2022,, New Orleans, LA: United states, 35:8483–8497, 2022

Balntas V, Riba E, Ponsa D, Mikolajczyk K: Learning local feature descriptors with triplets and shallow convolutional neural networks. In BMVC, York: United kingdom, 119:1-9, 2016

Xue Y, Tan Y, Tan L, Qin J, Xiang X: Generating radiology reports via auxiliary signal guidance and a memory-driven network. Expert Syst Appl, 237:121260, 2024

Article  Google Scholar 

Li M, Lin B, Chen Z, Lin H, Liang X, Chang X: Dynamic graph enhanced contrastive learning for chest x-ray report generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver: Canada, 3334–3343, 2023

Alfarghaly O, Khaled R, Elkorany A, Helal M, Fahmy A: Automated radiology report generation using conditioned transformers. Informatics in Medicine Unlocked, 24:100557, 2021

Article  Google Scholar 

Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D: Language models are few-shot learners. In 34th Conference on Neural Information Processing Systems, NeurIPS 2020, December 6, 2020 - December 12, 2020, Virtual: Online, 1877–1901, 2020

Vinyals O, Toshev A, Bengio S, Erhan D: Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston: United states, 3156–3164, 2015

Chen Z, Song Y, Chang T, Wan X: Generating radiology reports via memory-driven transformer. In 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, November 16, 2020 - November 20, 2020, Virtual: Online, 1439–1449, 2020

Yang S, Wu X, Ge S, Zheng Z, Zhou SK, Xiao L: Radiology report generation with a learned knowledge base and multi-modal alignment. Med Image Anal, 86:102798, 2023

Article  PubMed  Google Scholar 

Bai C, Han X: MRFormer: Multiscale retractable transformer for medical image progressive denoising via noise level estimation. Image Vision Comput, 144:104974, 2024

Article  Google Scholar 

Hu J, Shen L, Albanie S, Sun G, Wu E: Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu: USA, 42:2011-2023, 2018

Johnson AEW, Pollard TJ, Berkowitz SJ, Greenbaum NR, Lungren MP, Deng CY, Mark RG, Horng S: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data, 6(1):317, 2019

Article  PubMed  PubMed Central  Google Scholar 

Demner-Fushman D, Kohli MD, Rosenman MB, Shooshan SE, Rodriguez L, Antani S, Thoma GR, McDonald CJ: Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc, 23(2):304-10, 2016

Article  PubMed  Google Scholar 

Liu F, Wu X, Ge S, Fan W, Zou Y: Exploring and distilling posterior and prior knowledge for radiology report generation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Nashville: USA, 13753–13762, 2021

Zhang K, Jiang H, Zhang J, Huang Q, Fan J, Yu J, Han W: Semi-Supervised Medical Report Generation via Graph-Guided Hybrid Feature Consistency. IEEE T Multimedia, 26:904-915, 2024

Article  Google Scholar 

Cao Y, Cui L, Yu F, Zhang L, Li Z, Liu N, Xu Y: Kdtnet: medical image report generation via knowledge-driven transformer. In International Conference on Database Systems for Advanced Applications, Gifu: Japan, 117–132, 2022

Xu D, Zhu H, Huang Y, Jin Z, Ding W, Li H, Ran M: Vision-knowledge fusion model for multi-domain medical report generation. Inform Fusion, 97:101817, 2023

Article  Google Scholar 

Wang Z, Han H, Wang L, Li X, Zhou L: Automated Radiographic Report Generation Purely on Transformer: A Multicriteria Supervised Approach. IEEE T Med Imaging, 41(10):2803-2813, 2022

Article  Google Scholar 

Cao Y, Cui L, Zhang L, Yu F, Li Z, Xu Y: MMTN: multi-modal memory transformer network for image-report consistent medical report generation. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington: United states, 37:277-285, 2023

You D, Liu F, Ge S, Xie X, Zhang J, Wu X: Aligntransformer: Hierarchical alignment of visual regions and disease tags for medical report generation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg: France, 72–82, 2021

Yan B, Pei M, Zhao M, Shan C, Tian Z: Prior Guided Transformer for Accurate Radiology Reports Generation. IEEE J Biomed Health Inform, 26(11):5631-5640, 2022

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif