The novel piperine derivative MHJ-LN inhibits breast cancer by inducing apoptosis via p53 activation

Adams CM, Mitra R, Xiao Y et al (2023) Targeted MDM2 Degradation Reveals a New Vulnerability for p53-Inactivated Triple-Negative Breast Cancer. Cancer Discover 13(5):1210–1229. https://doi.org/10.1158/2159-8290.CD-22-1131

Article  CAS  Google Scholar 

Adrada BE, Moseley TW, Kapoor MM et al. (2023) Triple-negative breast cancer: histopathologic features, genomics, and treatment. radiographics: a review publication of the radiological society of North America, Inc, 43(10): e230034. https://doi.org/10.1148/rg.230034

Bardia A, Hurvitz SA, DeMichele A et al (2021) Phase I/II trial of exemestane, Ribociclib, and everolimus in women with HR+/HER2- advanced breast cancer after progression on CDK4/6 Inhibitors (TRINITI-1). Clin Cancer Res an off J Am Assoc Cancer Res 27(15):4177–4185. https://doi.org/10.1158/1078-0432.CCR-20-2114

Article  Google Scholar 

Batool S, Asim L, Raffaq Qureshi F et al (2024) Molecular targets of plant-based alkaloids and polyphenolics in liver and breast cancer- an insight into anticancer drug development. Anti-Cancer Agents Med Chem. https://doi.org/10.2174/0118715206302216240628072554

Article  Google Scholar 

Bezerra DP, de Castro FO, Alves APNN et al (2008) In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J Appl Toxicol JAT 28(2):156–163. https://doi.org/10.1002/jat.1261

Article  CAS  PubMed  Google Scholar 

Bhattacharjya D, Sivalingam N (2024) Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. Naunyn-Schmiedeberg’s Arch Pharmacol. https://doi.org/10.1007/s00210-024-03189-2

Article  Google Scholar 

Chen D, Ma Y, Guo Z et al (2020) Two natural alkaloids synergistically induce apoptosis in breast cancer cells by inhibiting STAT3 activation. Molecules (Basel, Switzerland) 25(1):216. https://doi.org/10.3390/molecules25010216

Article  CAS  PubMed  Google Scholar 

Deepak KGK, Vempati R, Nagaraju GP et al (2020) Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 153:104683. https://doi.org/10.1016/j.phrs.2020.104683

Article  CAS  PubMed  Google Scholar 

Ding L, Cao J, Lin W et al (2020) The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci 21(6):1960. https://doi.org/10.3390/ijms21061960

Article  CAS  PubMed  PubMed Central  Google Scholar 

Do MT, Kim HG, Choi JH et al (2013) Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem 141(3):2591–2599. https://doi.org/10.1016/j.foodchem.2013.04.125

Article  CAS  PubMed  Google Scholar 

Fattah A, Morovati A, Niknam Z et al (2021) The synergistic combination of cisplatin and piperine induces apoptosis in MCF-7 cell line. Iran J Public Health 50(5):1037–1047. https://doi.org/10.18502/ijph.v50i5.6121

Article  PubMed  PubMed Central  Google Scholar 

Freeman-Cook K, Hoffman RL, Miller N et al (2021) Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 39(10):1404-1421.e11. https://doi.org/10.1016/j.ccell.2021.08.009

Article  CAS  PubMed  Google Scholar 

Greenshields AL, Doucette CD, Sutton KM et al (2015) Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett 357(1):129–140. https://doi.org/10.1016/j.canlet.2014.11.017

Article  CAS  PubMed  Google Scholar 

Han SZ, Liu HX, Yang LQ et al (2017) Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB. Biomed Pharmacother Biomed Pharm 96:1403–1410. https://doi.org/10.1016/j.biopha.2017.11.022

Article  CAS  Google Scholar 

Han J, Zhang S, He J et al (2023) Piperine Toxins 15(12):696. https://doi.org/10.3390/toxins15120696

Article  CAS  PubMed  Google Scholar 

Hao Q, Chen J, Lu H et al (2023) The ARTS of p53-dependent mitochondrial apoptosis. J Mol Cell Biol 14(10):mjac074. https://doi.org/10.1093/jmcb/mjac074

Article  CAS  PubMed  Google Scholar 

Hu H, Tian M, Ding C et al (2018) The C/EBP Homologous Protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 9:3083. https://doi.org/10.3389/fimmu.2018.03083

Article  CAS  PubMed  Google Scholar 

Huang Y, Che X, Wang PW et al (2024) p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 101:44–57. https://doi.org/10.1016/j.semcancer.2024.05.001

Article  CAS  PubMed  Google Scholar 

Jokhadze N, Das A, Dizon DS (2024) Global cancer statistics: A healthy population relies on population health. CA Cancer J Clin 74(3):224–226. https://doi.org/10.3322/caac.21838

Article  PubMed  Google Scholar 

Khan AW, Farooq M, Haseeb M et al (2022) Role of plant-derived active constituents in cancer treatment and their mechanisms of action. Cells 11(8):1326. https://doi.org/10.3390/cells11081326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, Armand J, Safonov A et al (2023) Sequential activation of E2F via Rb degradation and c-Myc drives resistance to CDK4/6 inhibitors in breast cancer. Cell Rep 42(11):113198. https://doi.org/10.1016/j.celrep.2023.113198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klein AM, Biderman L, Tong D et al (2021) MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proc Natl Acad Sci USA 118(44):e2102420118. https://doi.org/10.1073/pnas.2102420118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopeina GS, Zhivotovsky B (2022) Programmed cell death: Past, present and future. Biochem Biophys Res Commun 633:55–58. https://doi.org/10.1016/j.bbrc.2022.09.022

Article  CAS  PubMed  Google Scholar 

Li Y, Zhang H, Merkher Y et al (2022) Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 15(1):121. https://doi.org/10.1186/s13045-022-01341-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Y, Xu J, Liao H et al (2014) Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumour Biol J Int Soc Oncodev Biol Med 35(4):3305–3310. https://doi.org/10.1007/s13277-013-1433-4

Article  CAS  Google Scholar 

Lin FT, Liu K, Garan LAW et al (2023) A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci USA 120(44):e2307793120. https://doi.org/10.1073/pnas.2307793120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Yadev VR, Aggarwal BB et al (2010) Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B[J]. Nat Prod Commun 5(8):1253–1257

PubMed  Google Scholar 

Majhi PD, Sharma A, Jerry DJ (2023) Genetic modifiers of p53: opportunities for breast cancer therapies. Oncotarget 14:236–241. https://doi.org/10.18632/oncotarget.28387

Article  PubMed  PubMed Central  Google Scholar 

Marra A, Curigliano G (2021) Adjuvant and neoadjuvant treatment of triple-negative breast cancer with chemotherapy. Cancer Journal Sudbury, Mass 27(1):41–49. https://doi.org/10.1097/PPO.0000000000000498

Article  CAS  PubMed  Google Scholar 

Morrison L, Loibl S, Turner NC (2024) The CDK4/6 inhibitor revolution - a game-changing era for breast cancer treatment. Nat Rev Clin Oncol 21(2):89–105. https://doi.org/10.1038/s41571-023-00840-4

Article  CAS  PubMed 

留言 (0)

沒有登入
gif