Lowering LDL cholesterol by PCSK9 inhibition: a new era of gene silencing, RNA, and alternative therapies

Adorni MP, Zimetti F, Lupo MG, Ruscica M, Ferri N (2020) Naturally occurring PCSK9 inhibitors. Nutrients 12(5):1440. https://doi.org/10.3390/nu12051440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agency E, medicines (2020) Leqvio (inclisiran). https://www.ema.europa.eu/en/documents/product-information/leqvio-epar-product-information_en.pdf. Accessed 7 Jan 2025

Ajufo E, Rader DJ (2016) Recent advances in the pharmacological management of hypercholesterolaemia. Lancet Diabetes Endocrinol 4(5):436–446. https://doi.org/10.1016/S2213-8587(16)00074-7

Article  CAS  PubMed  Google Scholar 

Arrieta A, Hong JC, Khera R, Virani SS, Krumholz HM, Nasir K (2017) Updated cost-effectiveness assessments of PCSK9 inhibitors from the perspectives of the health system and private payers: insights derived from the FOURIER Trial. JAMA Cardiol 2(12):1369–1374. https://doi.org/10.1001/jamacardio.2017.3655

Article  PubMed  PubMed Central  Google Scholar 

AstraZeneca (2022) AZD8233 reduced low-density lipoprotein cholesterol levels by 73% in patients with high-risk hypercholesterolemia in ETESIAN Phase IIb trial. https://www.astrazeneca.com/media-centre/press-releases/2022/azd8233-reduced-low-density-lipoprotein-cholesterol-levels-73-patients-high-risk-hypercholesterolemia-etesian-phase-iib-trial.html#. Accessed 24 July 2024

Ballantyne CM, Banka P, Mendez G, Garcia R, Rosenstock J, Rodgers A,…, Catapano AL (2023) Phase 2b randomized trial of the oral PCSK9 inhibitor MK-0616. J Am Coll Cardiol 81(16):1553–1564. https://doi.org/10.1016/j.jacc.2023.02.018

Basak A, Ozed-williams B, Basak S (n.d.) Small molecule phytocompounds as promoters of LDL-receptor and PCSK9 Inhibition: potential role as non-statin based cardio-protective agents. In: Cardioprotective Natural Prod p. 277–318. https://doi.org/10.1142/9789813231160_0008

Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W,…, Seidah NG (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279(47):48865–48875. https://doi.org/10.1074/jbc.M409699200

Cariou B, Le C, Costet P (2011) Clinical aspects of PCSK9. Atherosclerosis 216(2):258–265. https://doi.org/10.1016/j.atherosclerosis.2011.04.018

Article  CAS  PubMed  Google Scholar 

Carthew RW, Sontheir EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 134(4):642–655

Article  Google Scholar 

Catapano AL, Pirillo A, Norata GD (2020) New pharmacological approaches to target PCSK9. Curr Atheroscler Rep 22(7):https://doi.org/10.1007/s11883-020-00847-7

Chaudhary R, Garg J, Shah N, Sumner A (2017) PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol 9(2):76. https://doi.org/10.4330/wjc.v9.i2.76

Article  PubMed  PubMed Central  Google Scholar 

Chieng D, Canovas R, Segan L, Sugumar H, Voskoboinik A, Prabhu S,…, Kistler PM (2022) The impact of coffee subtypes on incident cardiovascular disease, arrhythmias, and mortality: long-term outcomes from the UK Biobank. Eur J Prev Cardiol 29(17), 2240–2249. https://doi.org/10.1093/eurjpc/zwac189

Choi HK, Hwang JT, Nam TG, Kim SH, Min DK, Park SW, Chung MY (2017) Welsh onion extract inhibits PCSK9 expression contributing to the maintenance of the LDLR level under lipid depletion conditions of HepG2 cells. Food Funct 8(12):4582–4591. https://doi.org/10.1039/c7fo00562h

Article  CAS  PubMed  Google Scholar 

Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354(12):1264–1272. https://doi.org/10.1056/NEJMoa054013

Article  CAS  PubMed  Google Scholar 

Cui CJ, Li S, Li JJ (2015) PCSK9 and its modulation. Clin Chim Acta 440:79–86. https://doi.org/10.1016/j.cca.2014.10.044

Article  CAS  PubMed  Google Scholar 

Dadu RT, Ballantyne CM (2014) Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol 11(10):563–575. https://doi.org/10.1038/nrcardio.2014.84

Article  CAS  PubMed  Google Scholar 

Desai NR, Giugliano RP, Wasserman SM, Gibbs JP, Liu T, Scott R, Sabatine MS (2017) Association between circulating baseline proprotein convertase subtilisin kexin type 9 levels and efficacy of evolocumab. JAMA Cardiol 2(5):556–560. https://doi.org/10.1001/jamacardio.2016.5395

Article  PubMed  PubMed Central  Google Scholar 

Desai NR, Campbell C, Electricwala B, Petrou M, Trueman D, Woodcock F (2022) Cost effectiveness of inclisiran in atherosclerotic cardiovascular patients with elevated low - density lipoprotein cholesterol despite statin use : a threshold analysis. Am J Cardiovasc Drugs 22(5):545–556. https://doi.org/10.1007/s40256-022-00534-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding M, Bhupathiraju SN, Satija A, Van Dam RM, Hu FB (2014a) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129(6):643–659. https://doi.org/10.1161/CIRCULATIONAHA.113.005925

Article  CAS  PubMed  Google Scholar 

Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN,…, Musunuru K (2014) Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115(5):488–492. https://doi.org/10.1161/CIRCRESAHA.115.304351

Dua P, Reeta KH (2020) PCSK9 ( Proprotein Convertase Subtilisin / Kexin Type 9 ): A Narrative Review. J Pract Cardiovasc Sci 6(3):226–33. https://doi.org/10.4103/jpcs.jpcs

Article  Google Scholar 

Eilat S, Oestraicher Y, Rabinkov A, Ohad D, Mirelman D, Battler A, Eldar M, Vered Z (1995) Alteration of lipid profile in hyperlipidemic rabbits by allicin, an active constituent of garlic. Coron Artery Dis 6(12):985–990. http://europepmc.org/abstract/MED/8723021. Accessed 10 Aug 2024

Fan TY, Yang YX, Zeng QX, Wang XL, Wei W, Guo XX, … Hong B (2021) Structure–activity relationship and biological evaluation of berberine derivatives as PCSK9 down-regulating agents. Bioorg Chem 113(February):104994. https://doi.org/10.1016/j.bioorg.2021.104994

Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairgofer A, Luhrs P, Schneeberger A, von Bonin A, Mattner F, Schmidt W (2014) Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS ONE 9(12):1–18. https://journals.plos.org/plosone/article?id=https://doi.org/10.1371/journal.pone.0114469. Accessed 5 Aug 2024

Garcia R, Burkle J (2018) New and future parenteral therapies for the management of lipid disorders. Arch Med Res 49(8):538–547. https://doi.org/10.1016/j.arcmed.2019.01.001

Article  CAS  PubMed  Google Scholar 

Gennemark P, Walter K, Clemmensen N, Rekić D, Nilsson CAM, Knöchel J,…, Davies N (2021) An oral antisense oligonucleotide for PCSK9 inhibition. Sci Transl Med 13(593):eabe9117. https://doi.org/10.1126/scitranslmed.abe9117

Guo YL, Zhang W, Li JJ (2014) PCSK9 and lipid lowering drugs. Clin Chim Acta 437:66–71. https://doi.org/10.1016/j.cca.2014.07.008

Article  CAS  PubMed  Google Scholar 

Gupta JK, Kumar S, Singh K, Singh K, Meenakshi K (2022) PCSK9 Inhibitors. Pharmacol Ther Potential 9(May):1–17. https://doi.org/10.20944/preprints202205.0290.v1

Article  CAS  Google Scholar 

Gustafsen C, Olsen D, Vilstrup J, Lund S, Reinhardt A, Wellner N,…, Glerup S (2017) Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nature Commun 8(1):1–14. https://doi.org/10.1038/s41467-017-00568-7

Hofherr A, Schumi J, Rekić D, Knöchel J, Nilsson CAM, Rudvik A,…, Carlsson BCL (2022) ETESIAN: A phase 2B study of the efficacy, safety and tolerability of AZD8233, a PCSK9-targeted antisense oligonucleotide, in patients with dyslipidemia. Atherosclerosis 355:28. https://doi.org/10.1016/j.atherosclerosis.2022.06.075

Hofherr A, NilssonRekicKnoechelGoldwaterHanKusnirOvercashWatersWhiteHurt-CamejoWernevikIsakssonWangBhanotRyden CADJRDJJSMAELRYSKM, CBC (2021) Safety, pharmacokinetics and pharmacodynamics of multiple ascending doses of AZD8233, targeting PCSK9, in patients with dyslipidemia. Circulation 144(Suppl_1):A974

Article  Google Scholar 

Horton JD, Cohen JC, Hobbs HH (2007) Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32(2):71–77. https://doi.org/10.1016/j.tibs.2006.12.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ionis Pharmaceuticals (2022) Press release, https://ir.ionispharma.com/news-releases/news-release-details/ionis-provides-update-development-program-evaluating-pcsk9. Accessed 13 Aug 2024

Jing Y, Hu T, Lin C, Xiong Q, Liu F, Yuan J,…, Wang R (2019) Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor α-mediated pathway in L02 cells. Eur J Pharmacol 855, 216–226. https://doi.org/10.1016/j.ejphar.2019.05.019

Kawakami R, Nozato Y, Nakagami H, Ikeda Y, Shimamura M, Yoshida S, Sun J, Kawano T, Takami Y, Noma T, Rakugi H, Minamino T, Morishita R (2018) Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/kexin type 9 (PCSK9) epitope in mice. PLoS ONE 13(2):e0191895. https://doi.org/10.1371/journal.pone.0191895

Kosmas CE, Munoz Estrella A, Sourlas A, Silverio D, Hilario E, Montan PD (2018) Inclisiran: a new promising agent in the manage- ment of hypercholesterolemia Diseases. Dis 6(3):63

CAS  Google Scholar 

Kumar R, Tonkin A, Liew D, Zomer E (2018) The cost-effectiveness of PCSK9 inhibitors - the Australian healthcare perspective. Int J Cardiol 267(2017):183–187. https://doi.org/10.1016/j.ijcard.2018.04.122

Article  PubMed  Google Scholar 

Langsted A, Nordestgaard BG (2019) Antisense oligonucleotides targeting lipoprotein(a). Curr Atheroscler Rep 21(8):1–7. https://doi.org/10.1007/s11883-019-0792-8

Article  CAS  Google Scholar 

Latimer J, Batty JA, Neely RDG, Kunadian V (2016) PCSK9 inhibitors in the prevention of cardiovascular disease. J Thromb Thrombolysis 42(3):405–419. https://doi.org/10.1007/s11239-016-1364-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lebeau PF, Byun JH, Platko K, Saliba P, Sguazzin M, MacDonald ME,…, Austin RC (2022) Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun 13(1). https://doi.org/10.1038/s41467-022-28240-9

León-Martínez JM, Martínez-Abundis E, González-Ortiz M, Pérez-Rubio KG (2021) Effect of berberine plus bezafibrate administration on the lipid profile of patients with mixed dyslipidemia: a pilot clinical trial. J Med Food 24(2):111–115. https://doi.org/10.1089/jmf.2020.0029

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif