Brouwers S, Sudano I, Kokubo Y, Sulaica EM. Arterial hypertension. Lancet. 2021;398(10296):249–61.
Bello AK, Okpechi IG, Levin A, Ye F, Damster S, Arruebo S, Donner JA, Caskey FJ, Cho Y, Davids MR, Davison SN, Htay H, Jha V, Lalji R, Malik C, Nangaku M, See E, Sozio SM, Tonelli M, Wainstein M, Yeung EK, Johnson DW. An update on the global disparities in kidney disease burden and care across world countries and regions. Lancet Glob Health. 2024;12(3):e382–95.
Petreski T, Varda L, Gradišnik L, Maver U, Bevc S. Renal proximal tubular epithelial cells: from harvesting to Use in studies. Nephron. 2023;147(11):650–4.
Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33(1):102–7.
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol. 2024;20(2):101–19.
Zhang Y, Zhang N, Zou Y, Song C, Cao K, Wu B, You S, Lu S, Wang D, Xu J, Huang X, Zhang P, Fan Z, Liu J, Cheng Z, Zhang Z, Kong C, Cao L, Sun Y. Deacetylation of Septin4 by SIRT2 (Silent mating type information regulation 2 Homolog-2) mitigates Damaging of Hypertensive Nephropathy. Circ Res. 2023;132(5):601–24.
Article PubMed PubMed Central Google Scholar
Carlström M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat Rev Nephrol. 2021;17(9):575–90.
Article PubMed PubMed Central Google Scholar
Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248–64.
Article PubMed PubMed Central Google Scholar
Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K, Wang N. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol. 2019;234(10):17690–703.
An X, Ma X, Liu H, Song J, Wei T, Zhang R, Zhan X, Li H, Zhou J. Inhibition of PDGFRβ alleviates endothelial cell apoptotic injury caused by DRP-1 overexpression and mitochondria fusion failure after mitophagy. Cell Death Dis. 2023;14(11):756.
Article PubMed PubMed Central Google Scholar
Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, Jiao S, Gao Y, Liu C, Duan Z, Li D, He Y, Wei B, Wang H. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501–14.
Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E, Rowan WC, Sancho S, Walker LS, Vanhaesebroeck B, Okkenhaug K. Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4 + CD25 + Foxp3 + regulatory T cells. J Immunol. 2006;177(10):6598–602.
Glinton KE, Ma W, Lantz C, Grigoryeva LS, DeBerge M, Liu X, Febbraio M, Kahn M, Oliver G, Thorp EB. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. J Clin Invest. 2022;132(9):e140685.
Article PubMed PubMed Central Google Scholar
Beaini S, Saliba Y, Hajal J, Smayra V, Bakhos JJ, Joubran N, Chelala D, Fares N. VEGF-C attenuates renal damage in salt-sensitive hypertension. J Cell Physiol. 2019;234(6):9616–30.
Wang JF, Zhang X, Groopman JE. Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J Biol Chem. 2004;279(26):27088–97.
Wu Q, Meng W, Zhu B, Chen X, Fu J, Zhao C, Liu G, Luo X, Lv Y, Zhao W, Wang F, Hu S, Zhang S. VEGFC ameliorates salt-sensitive hypertension and hypertensive nephropathy by inhibiting NLRP3 inflammasome via activating VEGFR3-AMPK dependent autophagy pathway. Cell Mol Life Sci. 2023;80(11):327.
Article PubMed PubMed Central Google Scholar
Wu D, Huang W, Zhang J, He L, Chen S, Zhu S, Sang Y, Liu K, Hou G, Chen B, Xu Y, Liu B, Yao H. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int J Biol Macromol. 2024;262(Pt 1):129950.
Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 2022;32(10):841–53.
Article PubMed PubMed Central Google Scholar
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736–66.
Article PubMed PubMed Central Google Scholar
Sivertsson E, Balboa A, Schiffer TA, Hansell P, Friederich-Persson M, Persson P, Palm F. Dose-dependent regulation of kidney mitochondrial function by angiotensin II. Ups J Med Sci, 2023;128:e10312.
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med. 2022;28(10):836–49.
Article PubMed PubMed Central Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci. 2024;81(1):34.
Article PubMed PubMed Central Google Scholar
Wang L, Qi H, Tang Y, Shen HM. Post-translational modifications of Key Machinery in the control of Mitophagy. Trends Biochem Sci. 2020;45(1):58–75.
Reddy MA, Natarajan R. Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int. 2015;88(2):250–61.
Article PubMed PubMed Central Google Scholar
Cai W, Xu D, Zeng C, Liao F, Li R, Lin Y, Zhao Y, Dong W, Wang Q, Yang H, Wen D, Gu J, Shentu W, Yu H, Zhang X, Wei J, Duan J. Modulating lysine crotonylation in Cardiomyocytes improves myocardial outcomes. Circ Res. 2022;131(5):456–72.
Zheng Y, Zhu L, Qin ZY, Guo Y, Wang S, Xue M, Shen KY, Hu BY, Wang XF, Wang CQ, Qin LX, Dong QZ. Modulation of cellular metabolism by protein crotonylation regulates pancreatic cancer progression. Cell Rep. 2023;42(7):112666.
Wei W, Liu X, Chen J, Gao S, Lu L, Zhang H, Ding G, Wang Z, Chen Z, Shi T, Li J, Yu J, Wong J. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res. 2017;27(7):898–915.
Article PubMed PubMed Central Google Scholar
Chen J, Fu Y, Day DS, Sun Y, Wang S, Liang X, Gu F, Zhang F, Stevens SM, Zhou P, Li K, Zhang Y, Lin RZ, Smith LEH, Zhang J, Sun K, Melero-Martin JM, Han Z, Park PJ, Zhang B, Pu WT. VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nat Commun. 2017;8(1):383.
Article PubMed PubMed Central Google Scholar
Ruiz-Andres O, Sanchez-Niño MD, Cannata-Ortiz P, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB. Histone lysine crotonylation during acute kidney injury in mice. Dis Model Mech. 2016;9(6):633–45.
Article PubMed PubMed Central Google Scholar
Yuan H, Wu X, Wu Q, Chatoff A, Megill E, Gao J, Huang T, Duan T, Yang K, Jin C, Yuan F, Wang S, Zhao L, Zinn PO, Abdullah KG, Zhao Y, Snyder NW, Rich JN. Lysine catabolism reprograms tumour immunity through histone crotonylation. Nature. 2023;617(7962):818–26.
Article PubMed PubMed Central Google Scholar
Mu N, Wang Y, Li X, Du Z, Wu Y, Su M, Wang Y, Sun X, Su L, Liu X. Crotonylated BEX2 interacts with NDP52 and enhances mitophagy to modulate chemotherapeutic agent-induced apoptosis in non-small-cell lung cancer cells. Cell Death Dis. 2023;14(9):645.
留言 (0)