Decoding the Link: Exploring FMO3 Gene Variations as a Key to Understanding Type Two Diabetes Through Bioinformatics and Case–Control Analyses

Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27(14):R713–5.

Article  CAS  PubMed  Google Scholar 

Poodineh M, Saravani R, Mirhosseini M, Sargazi S. Association of two methylenetetrahydrofolate reductase polymorphisms (rs1801133, rs1801131) with the risk of type 2 diabetes in South-East of Iran. Rep Biochem Mol Biol. 2019;8(2):178.

CAS  PubMed  PubMed Central  Google Scholar 

Khalili-Moghadam S, Mirmiran P, Bahadoran Z, Azizi F. The Mediterranean diet and risk of type 2 diabetes in Iranian population. Eur J Clin Nutr. 2019;73(1):72–8.

Article  PubMed  Google Scholar 

Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet. 2023.

Matharoo K, Arora P, Bhanwer A. Association of adiponectin (AdipoQ) and sulphonylurea receptor (ABCC8) gene polymorphisms with Type 2 Diabetes in North Indian population of Punjab. Gene. 2013;527(1):228–34.

Article  CAS  PubMed  Google Scholar 

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

Article  PubMed  Google Scholar 

Oraii A, Shafiee A, Jalali A, Alaeddini F, Saadat S, Masoudkabir F, et al. Prevalence, awareness, treatment, and control of type 2 diabetes mellitus among the adult residents of tehran: Tehran Cohort Study. BMC Endocr Disord. 2022;22(1):248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saadat M. Evaluation of glutathione S-transferase P1 (GSTP1) Ile105Val polymorphism and susceptibility to type 2 diabetes mellitus, a meta-analysis. EXCLI J. 2017;16:1188.

PubMed  PubMed Central  Google Scholar 

Ebtehaj S, Gruppen EG, Parvizi M, Tietge UJ, Dullaart RP. The anti-inflammatory function of HDL is impaired in type 2 diabetes: role of hyperglycemia, paraoxonase-1 and low grade inflammation. Cardiovasc Diabetol. 2017;16(1):1–9.

Article  Google Scholar 

Galavi H, Mollashahee-Kohkan F, Saravani R, Sargazi S, Noorzehi N, Shahraki H. HHEX gene polymorphisms and type 2 diabetes mellitus: a case-control report from Iran. J Cell Biochem. 2019;120(10):16445–51.

Article  CAS  PubMed  Google Scholar 

Pagán A, Sabater-Molina M, Olza J, Prieto-Sánchez MT, Blanco-Carnero JE, Parrilla JJ, et al. A gene variant in the transcription factor 7-like 2 (TCF7L2) is associated with an increased risk of gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol. 2014;180:77–82.

Article  PubMed  Google Scholar 

Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002;51(2):536–40.

Article  CAS  PubMed  Google Scholar 

Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304(5675):1325–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 2005;19(20):2435–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047–54.

Article  CAS  PubMed  Google Scholar 

Zhande R, Mitchell JJ, Wu J, Sun XJ. Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol. 2002;22(4):1016–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han X, Wei Y, Hu H, Wang J, Li Z, Wang F, et al. Genetic risk, a healthy lifestyle, and type 2 diabetes: the Dongfeng–Tongji cohort study. J Clin Endocrinol Metab. 2020;105(4):1242–50.

Article  Google Scholar 

Shakeri M, Rasoulian A, Erfanian Taghvaei MR, Etemadrezaei S. Evaluation of relationship between anthropometric indexes and diabetes. Med J Mashhad Univ Med Sci. 2015;58(7):390–6.

Google Scholar 

Obesity P. Managing the global epidemic. Genf: World Health Organization (WHO); 1998.

Google Scholar 

Scheen AJ. From obesity to diabetes: why, when and who? Acta Clin Belg. 2000;55(1):9–15.

Article  CAS  PubMed  Google Scholar 

Tian X, Chen S, Wang P, Xu Q, Zhang Y, Luo Y, et al. Insulin resistance mediates obesity-related risk of cardiovascular disease: a prospective cohort study. Cardiovasc Diabetol. 2022;21(1):289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das M, Pal S, Ghosh A. Family history of type 2 diabetes and prevalence of metabolic syndrome in adult Asian Indians. J Cardiovasc Dis Res. 2012;3(2):104–8.

Article  PubMed  PubMed Central  Google Scholar 

Xu M, Bhatt DK, Yeung CK, Claw KG, Chaudhry AS, Gaedigk A, et al. Genetic and nongenetic factors associated with protein abundance of flavin-containing monooxygenase 3 in human liver. J Pharmacol Exp Ther. 2017;363(2):265–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng. 2014;118(4):476–81.

Article  CAS  PubMed  Google Scholar 

Cashman JR. Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem Res Toxicol. 1995;8(2):165–81.

Article  CAS  Google Scholar 

Sparsø T, Andersen G, Nielsen T, Burgdorf K, Gjesing A, Nielsen A, et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia. 2008;51(1):70–5.

Article  PubMed  Google Scholar 

Ziegler DM. Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol. 1993;33(1):179–99.

Article  CAS  PubMed  Google Scholar 

Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, Crooke RM, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015;6(1):1–10.

Article  Google Scholar 

Zhu K-X, Song P-Y, Li M-P, Du Y, Ma Q, Peng L-M, et al. Association of FMO3 rs1736557 polymorphism with clopidogrel response in Chinese patients with coronary artery disease. Eur J Clin Pharmacol. 2021;77:359–68.

Article  CAS  PubMed  Google Scholar 

Shimizu M, Allerston CK, Shephard EA, Yamazaki H, Phillips IR. Relationships between flavin-containing mono-oxygenase 3 (FMO3) genotype and trimethylaminuria phenotype in a J apanese population. Br J Clin Pharmacol. 2014;77(5):839–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadi IS, Saravani R, Khalili T, Sargazi S, Majidpour M, Sarhadi M, et al. Coding variants of the FMO3 gene are associated with the risk of chronic kidney disease: a case-control study. Rep Biochem Mol Biol. 2022;11(3):430.

Article  CAS  Google Scholar 

Bryant TS, Duggal P, Yu B, Morrison AC, Shafi T, Ehret G, et al. Association of FMO3 variants with blood pressure in the atherosclerosis risk in communities study. Int J Hypertens. 2019;2019(1):2137629.

PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif