Tau in Multiple Sclerosis: A Review of Therapeutic Potential

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Mult Scler J. 2020;26(14):1816–21.

Article  Google Scholar 

Klineova S, Lublin FD. Clinical Course of Multiple Sclerosis. Cold Spring Harb Perspect Med. 2018;8(9):a028928.

Article  PubMed  PubMed Central  Google Scholar 

Chiang HS, Khera A, Stopschinski BE, Stuve O, Hart J, Kelley B, et al. Cognitive Decline in Older People with Multiple Sclerosis—A Narrative Review of the Literature. Geriatrics. 2022;7(3):61.

Article  PubMed  PubMed Central  Google Scholar 

Lassmann H, Van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012;8(11):647–56.

Article  CAS  PubMed  Google Scholar 

Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.

Article  CAS  PubMed  Google Scholar 

Compston A, Coles A. Multiple sclerosis. The Lancet. 2008;372(9648):1502–17.

Article  CAS  Google Scholar 

Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, et al. Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis. Cell. 2018;175(1):85-100.e23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metz I, Weigand SD, Popescu BFG, Frischer JM, Parisi JE, Guo Y, et al. Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann Neurol. 2014;75(5):728–38.

Article  PubMed  PubMed Central  Google Scholar 

Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78(5):710–21.

Article  PubMed  PubMed Central  Google Scholar 

Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol (Berl). 2017;133(1):13–24.

Article  CAS  PubMed  Google Scholar 

Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C, et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020;77(9):1132.

Article  PubMed  Google Scholar 

Lublin FD, Häring DA, Ganjgahi H, Ocampo A, Hatami F, Čuklina J, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147–61.

Article  PubMed  PubMed Central  Google Scholar 

Amin M, Hersh CM. Updates and Advances in Multiple Sclerosis Neurotherapeutics. Neurodegener Dis Manag. 2023;13(1):47–70.

Article  CAS  PubMed  Google Scholar 

McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA. 2021;325(8):765.

Article  CAS  PubMed  Google Scholar 

Graf J, Aktas O, Rejdak K, Hartung HP. Monoclonal Antibodies for Multiple Sclerosis: An Update. BioDrugs. 2019;33(1):61–78.

Article  CAS  PubMed  Google Scholar 

Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol. 2021;20(6):470–83.

Article  CAS  PubMed  Google Scholar 

Milo R, Korczyn AD, Manouchehri N, Stüve O. The temporal and causal relationship between inflammation and neurodegeneration in multiple sclerosis. Mult Scler J. 2020;26(8):876–86.

Article  Google Scholar 

Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101(4):1371–8.

Article  CAS  PubMed  Google Scholar 

Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3(4):519–26.

Article  CAS  PubMed  Google Scholar 

Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):22–35.

Article  CAS  Google Scholar 

Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, et al. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc B Biol Sci. 2014;369(1633):20130144.

Article  Google Scholar 

Kidd M. Paired Helical Filaments in Electron Microscopy of Alzheimer’s Disease. Nature. 1963;197(4863):192–3.

Article  CAS  PubMed  Google Scholar 

Alonso ADC, Li B, Grundke-Iqbal I, Iqbal K. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci. 2006;103(23):8864–9.

Article  CAS  PubMed  Google Scholar 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

Article  CAS  PubMed  Google Scholar 

Ferrer I, López-González I, Carmona M, Arregui L, Dalfó E, Torrejón-Escribano B, et al. Glial and Neuronal Tau Pathology in Tauopathies: Characterization of Disease-Specific Phenotypes and Tau Pathology Progression. J Neuropathol Exp Neurol. 2014;73(1):81–97.

Article  CAS  PubMed  Google Scholar 

LoPresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI. Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci. 1995;92(22):10369–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stopschinski BE, Tredici KD, Estill-Terpack SJ, Ghebremdehin E, Yu FF, Braak H, et al. Anatomic survey of seeding in Alzheimer’s disease brains reveals unexpected patterns. Acta Neuropathol Commun. 2021;9(1):164.

Article  PubMed  PubMed Central  Google Scholar 

Lee VMY, Goedert M, Trojanowski JQ. Neurodegenerative Tauopathies. Annu Rev Neurosci. 2001;24(1):1121–59.

Article  CAS  PubMed  Google Scholar 

Schneider A, Biernat J, Von Bergen M, Mandelkow E, Mandelkow EM. Phosphorylation that Detaches Tau Protein from Microtubules (Ser262, Ser214) Also Protects It against Aggregation into Alzheimer Paired Helical Filaments. Biochemistry. 1999;38(12):3549–58.

Article  CAS  PubMed  Google Scholar 

Alonso ADC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci. 2001;98(12):6923–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hübschmann S, et al. Oligomer Formation of Tau Protein Hyperphosphorylated in Cells. J Biol Chem. 2014;289(49):34389–407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovacs GG, Ghetti B, Goedert M. Classification of diseases with accumulation of Tau protein. Neuropathol Appl Neurobiol. 2022;48(3):e12792.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif