Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., Huang, C.-S., Shen, D., Chen, C.-M.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans. Scientific reports 6(1), 24454 (2016)
Golan, R., Jacob, C., Denzinger, J.: Lung nodule detection in ct images using deep convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 243–250 (2016). IEEE
Christ, P.F., Ettlinger, F., Grün, F., Elshaera, M.E.A., Lipkova, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., et al.: Automatic liver and tumor segmentation of ct and mri volumes using cascaded fully convolutional neural networks. arXiv preprint arXiv:1702.05970 (2017)
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence 40(4), 834–848 (2017)
Fausto Milletari, N., V-Net, A.S.-A.: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241 (2015). Springer
Kwon, D., Kwak, S.: Semi-supervised semantic segmentation with error localization network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9957–9967 (2022)
Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G.: Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4258–4267 (2022)
Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. Advances in neural information processing systems 31 (2018)
Lai, X., Tian, Z., Jiang, L., Liu, S., Zhao, H., Wang, L., Jia, J.: Semi-supervised semantic segmentation with directional context-aware consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1205–1214 (2021)
Olsson, V., Tranheden, W., Pinto, J., Svensson, L.: Classmix: Segmentation-based data augmentation for semi-supervised learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1369–1378 (2021)
Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.-L.: Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Advances in neural information processing systems 33, 596–608 (2020)
Berthelot, D., Carlini, N., Cubuk, E.D., Kurakin, A., Sohn, K., Zhang, H., Raffel, C.: Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring. arXiv preprint arXiv:1911.09785 (2019)
Basak, H., Ghosal, S., Sarkar, R.: Addressing class imbalance in semi-supervised image segmentation: A study on cardiac mri. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 224–233 (2022). Springer
Huang, W., Chen, C., Xiong, Z., Zhang, Y., Chen, X., Sun, X., Wu, F.: Semi-supervised neuron segmentation via reinforced consistency learning. IEEE Transactions on Medical Imaging 41(11), 3016–3028 (2022)
Li, X., Yu, L., Chen, H., Fu, C.-W., Xing, L., Heng, P.-A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Transactions on Neural Networks and Learning Systems 32(2), 523–534 (2021) https://doi.org/10.1109/TNNLS.2020.2995319
Li, X., Yu, L., Chen, H., Fu, C.-W., Xing, L., Heng, P.-A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE transactions on neural networks and learning systems 32(2), 523–534 (2020)
Liu, X., Xing, F., Shusharina, N., Lim, R., Jay Kuo, C.-C., El Fakhri, G., Woo, J.: Act: Semi-supervised domain-adaptive medical image segmentation with asymmetric co-training. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 66–76 (2022). Springer
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)
Yang, L., Qi, L., Feng, L., Zhang, W., Shi, Y.: Revisiting weak-to-strong consistency in semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7236–7246 (2023)
Upadhyay, K., Agrawal, M., Vashist, P.: Wavelet based fine-to-coarse retinal blood vessel extraction using u-net model. In: 2020 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5 (2020). IEEE
Yin, X., Xu, X.: A method for improving accuracy of deeplabv3+ semantic segmentation model based on wavelet transform. In: International Conference in Communications, Signal Processing, and Systems, pp. 315–320 (2021). Springer
Jin, Q., Cui, H., Sun, C., Zheng, J., Wei, L., Fang, Z., Meng, Z., Su, R.: Semi-supervised histological image segmentation via hierarchical consistency enforcement. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 3–13 (2022). Springer
Liu, J., Desrosiers, C., Zhou, Y.: Semi-supervised medical image segmentation using cross-model pseudo-supervision with shape awareness and local context constraints. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 140–150 (2022). Springer
Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557–11568 (2021)
Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. Advances in neural information processing systems 17 (2004)
Xie, Q., Luong, M.-T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)
Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Newby, D., Dharmakumar, R., Tsaftaris, S.A.: Factorised spatial representation learning: Application in semi-supervised myocardial segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II 11, pp. 490–498 (2018). Springer
Cui, W., Liu, Y., Li, Y., Guo, M., Li, Y., Li, X., Wang, T., Zeng, X., Ye, C.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26, pp. 554–565 (2019). Springer
Gong, C., Wang, D., Liu, Q.: Alphamatch: Improving consistency for semi-supervised learning with alpha-divergence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13683–13692 (2021)
Li, J., Xiong, C., Hoi, S.C.: Comatch: Semi-supervised learning with contrastive graph regularization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9475–9484 (2021)
Yang, X., Song, Z., King, I., Xu, Z.: A survey on deep semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering 35(9), 8934–8954 (2022)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019). PMLR
Wu, Y., Ge, Z., Zhang, D., Xu, M., Zhang, L., Xia, Y., Cai, J.: Mutual consistency learning for semi-supervised medical image segmentation. Medical Image Analysis 81, 102530 (2022)
Chen, C., Zhou, K., Wang, Z., Xiao, R.: Generative consistency for semi-supervised cerebrovascular segmentation from tof-mra. IEEE Transactions on Medical Imaging 42(2), 346–353 (2022)
Li, Q., Shen, L.: Wavesnet: Wavelet integrated deep networks for image segmentation. arxiv 2020. arXiv preprint arXiv:2005.14461
Huang, Y., Zhou, C., Chen, L., Chen, J., Lan, S.: Medical frequency domain learning: Consider inter-class and intra-class frequency for medical image segmentation and classification. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 897–904 (2021). IEEE
Hansen, B.C., Hess, R.F.: Structural sparseness and spatial phase alignment in natural scenes. JOSA A 24(7), 1873–1885 (2007)
Xie, J., Li, W., Zhan, X., Liu, Z., Ong, Y.S., Loy, C.C.: Masked frequency modeling for self-supervised visual pre-training. arXiv preprint arXiv:2206.07706 (2022)
Zhao, Z., Yang, L., Long, S., Pi, J., Zhou, L., Wang, J.: Augmentation matters: A simple-yet-effective approach to semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11350–11359 (2023)
Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Medical image analysis 67, 101840 (2021)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Cozman, F.G., Cohen, I., Cirelo, M.: Unlabeled data can degrade classification performance of generative classifiers. In: FLAIRS, pp. 327–331 (2002)
Yuan, J., Liu, Y., Shen, C., Wang, Z., Li, H.: A simple baseline for semi-supervised semantic segmentation with strong data augmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8229–8238 (2021)
Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.-A., Cetin, I., Lekadir, K., Camara, O., Ballester, M.A.G., et al: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE transactions on medical imaging 37(11), 2514–2525 (2018)
Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault–workshop and challenge. In: Proc. MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge, vol. 5, p. 12 (2015)
Liu, Q., Gu, X., Henderson, P., Deligianni, F.: Multi-scale cross contrastive learning for semi-supervised medical image segmentation. arXiv preprint arXiv:2306.14293 (2023)
Miao, J., Chen, C., Liu, F., Wei, H., Heng, P.-A.: Caussl: Causality-inspired semi-supervised learning for medical image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21426–21437 (2023)
Yang, Y., Wang, R., Zhang, T., Su, J.: Semi-supervised medical image segmentation via feature-perturbed consistency. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1635–1642 (2023). IEEE
Long, J., Yang, C., Ren, Y., Zeng, Z.: Semi-supervised medical image segmentation via feature similarity and reliable-region enhancement. Computers in Biology and Medicine 167, 107668 (2023)
Basak, H., Yin, Z.: Pseudo-label guided contrastive learning for semi-supervised medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19786–19797 (2023)
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)
留言 (0)