Bennett SR, Folk JC, Blodi CF, Klugman M. Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am J Ophthalmol. 1990;109:33–7.
Article CAS PubMed Google Scholar
Scupola A, Coscas G, Soubrane G, Balestrazzi E. Natural history of macular subretinal hemorrhage in age-related macular degeneration. Ophthalmologica. 1999;213:97–102.
Article CAS PubMed Google Scholar
Haupert CL, McCuen BW, Jaffe GJ, Steuer ER, Toth CA, Fekrat S, et al. Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid-gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration. Am J Ophthalmol. 2001;131:208–15.
Article CAS PubMed Google Scholar
Inoue M, Shiraga F, Shirakata Y, Morizane Y, Kimura S, Hirataka A. Subretinal injection of recombinant tissue plasminogen activator for submacular hemorrhage associated with ruptured retinal arterial macroaneurysm. Graefes Arch Clin Exp Ophthalmol. 2015;253:1663–9.
Article CAS PubMed Google Scholar
Kimura S, Morizane Y, Hosokawa M, Shiode Y, Kawata T, Doi S et al. Submacular hemorrhage in polypoidal choroidal vasculopathy treated by vitrectomy and subretinal tissue plasminogen activator. Am J Ophthalmol. 2015;159:683-9.e1.
Doi S, Kimura S, Morizane Y, Hosokawa M, Shiode Y, Hirano M, et al. Adverse effect of macular intraretinal hemorrhage on the prognosis of submacular hemorrhage due to retinal arterial macroaneurysm rupture. Retina. 2020;40:989–97.
Article CAS PubMed Google Scholar
Doi S, Kimura S, Saito S, Inoue M, Sakuria T, Kobori A, et al. Impact of macular intraretinal hemorrhage and macular hole on the visual prognosis of submacular hemorrhage due to retinal arterial macroaneurysm rupture. Retina. 2023;43:585–93.
Article CAS PubMed Google Scholar
Ogura Y, Takanashi T, Ishigooka H, Ogino N. Quantitative analysis of lens changes after vitrectomy by fluorophotometry. Am J Ophthalmol. 1991;111:179–83.
Article CAS PubMed Google Scholar
Thompson JT, Glaser BM, Sjaarda RN, Murphy RP. Progression of nuclear sclerosis and long-term visual results of vitrectomy with transforming growth factor beta-2 for macular holes. Am J Ophthalmol. 1995;119:48–54.
Article CAS PubMed Google Scholar
Scharwey K, Pavlovic S, Jacobi KW. Combined clear corneal phacoemulsification, vitreoretinal surgery, and intraocular lens implantation. J Cataract Refract Surg. 1999;25:693–8.
Article CAS PubMed Google Scholar
McAlinden C, Wang Q, Gao R, Zhao W, Yu A, Li Y, Guo Y, et al. Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol. 2017;173:64–9.
Huang J, Chen H, Li Y, Chen Z, Gao R, Yu J, et al. Comprehensive comparison of axial length measurement with three swept-source OCT-based biometers and partial coherence interferometry. J Refract Surg. 2019;35:115–20.
Sato T, Korehisa H, Shibata S, Hayashi K. Prospective comparison of intraocular lens dynamics and refractive error between phacovitrectomy and phacoemulsification alone. Ophthalmol Retina. 2020;4:700–7.
Tamaoki A, Kojima T, Hasegawa A, Yamamoto M, Kaga T, Tanaka K, et al. Evaluation of axial length measurement using enhanced retina visualization mode of the swept-source optical coherence tomography biometer in dense cataract. Ophthalmic Res. 2021;64:595–603.
Kim YK, Woo SJ, Hyon JY, Ahn J, Park KH. Refractive outcomes of combined phacovitrectomy and delayed cataract surgery in retinal detachment. Can J Ophthalmol. 2015;50:360–6.
Rahman R, Kolb S, Bong CX, Stephenson J. Accuracy of user-adjusted axial length measurements with optical biometry in eyes having combined phacovitrectomy for macular-off rhegmatogenous retinal detachment. J Cataract Refract Surg 2016;42:1009–14.
Abou-Shousha M, Helaly HA, Osman IM. The accuracy of axial length measurements in cases of macula-off retinal detachment. Can J Ophthalmol. 2016;51:108–12.
Pongsachareonnont P, Tangjanyatam S. Accuracy of axial length measurements obtained by optical biometry and acoustic biometry in rhegmatogenous retinal detachment: a prospective study. Clin Ophthalmol. 2018;12:973–80.
Article PubMed PubMed Central Google Scholar
El-Khayat AR, Brent AJ, Peart SA, Chaudhuri PR. Accuracy of intraocular lens calculations based on fellow-eye biometry for phacovitrectomy for macula-off rhegmatogenous retinal detachments. Eye (Lond). 2019;33:1756–61.
Kimura S, Hosokawa MM, Shiode Y, Matoba R, Kanzaki Y, Goto Y, et al. Accuracy of ultrasound vs. fourier-domain optic biometry for measuring preoperative axial length in cases of rhegmatogenous retinal detachment. Jpn J Ophthalmol. 2023;67:645–51.
Article CAS PubMed Google Scholar
Manvikar SR, Allen D, Steel DHW. Optical biometry in combined phacovitrectomy. J Cataract Refract Surg. 2009;35:64–9.
Jeoung JW, Chung H, Yu HG. Factors influencing refractive outcomes after combined phacoemulsification and pars plana vitrectomy. Results of a prospective study. J Cataract Refract Surg. 2007;33:108–14.
Iwase T, Sugiyama K. Investigation of the stability of one-piece acrylic intraocular lenses in cataract surgery and in combined vitrectomy surgery. Br J Ophthalmol. 2006;90:1519–23.
Article CAS PubMed PubMed Central Google Scholar
Rahman R, Bong CX, Stephenson J. Accuracy of intraocular lens power estimation in eyes having phacovitrectomy for rhegmatogenous retinal detachment. Retina. 2014;34:1415–20.
Huang C, Zhang T, Liu J, Ji Q, Tan R. Changes in axial length, central cornea thickness, and anterior chamber depth after rhegmatogenous retinal detachment repair. BMC Ophthalmol. 2016;16:121.
Article PubMed PubMed Central Google Scholar
Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Optical biometry-based intraocular lens calculation and refractive outcomes after phacovitrectomy for rhegmatogenous retinal detachment and epiretinal membrane. Sci Rep. 2018;8:11319.
Article PubMed PubMed Central Google Scholar
Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Effect of gas tamponade on the intraocular lens position and refractive error after phacovitrectomy: a swept-source anterior segment OCT analysis. Ophthalmology. 2020;127:511–5.
Mizushima Y, Kawana K, Suto C, Shimamura E, Fukuyama M, Ohshika T. Evaluation of axial length measurement with new partial coherence interferometry OA-1000. Japanese J Ophthalmic Surg. 2010;23:453–7. (in Japanese).
Kimura S, Morizane Y, Matoba R, Hosokawa M, Shiode Y, Hirano M, et al. Retinal sensitivity after displacement of submacular hemorrhage due to polypoidal choroidal vasculopathy: effectiveness and safety of subretinal tissue plasminogen activator. Jpn J Ophthalmol. 2017;61:472–8.
Article CAS PubMed Google Scholar
Okanouchi T, Toshima S, Kimura S, Morizane Y, Shiraga F. Novel technique for subretinal injection using local removal of the internal limiting membrane. Retina. 2016;36:1035–8.
Eleftheriadis H. IOLMaster biometry: refractive results of 100 consecutive cases. Br J Ophthalmol. 2003;87:960–3.
Article CAS PubMed PubMed Central Google Scholar
Rose MBBS, Moshegov Franzco LT. Comparison of the Zeiss IOLMaster and applanation A-Scan ultrasound: biometry for intraocular lens calculation. Clin Exp Ophthalmol. 2003;31:121–4.
Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85:472–85.
De Bernardo M, Zeppa L, Forte R, Cennamo M, Caliendo L, Zeppa L, et al. Can we use the fellow eye biometric data to predict IOL power? Semin Ophthalmol. 2017;32:363–70.
Crossland MD, Engel SAm Legge GE. The preferred retinal locus in macular disease: toward a consensus definition. Retina. 2011;31:2109–14.
留言 (0)