Comparative analysis of axial length measurement method for eyes with submacular hemorrhage

Bennett SR, Folk JC, Blodi CF, Klugman M. Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am J Ophthalmol. 1990;109:33–7.

Article  CAS  PubMed  Google Scholar 

Scupola A, Coscas G, Soubrane G, Balestrazzi E. Natural history of macular subretinal hemorrhage in age-related macular degeneration. Ophthalmologica. 1999;213:97–102.

Article  CAS  PubMed  Google Scholar 

Haupert CL, McCuen BW, Jaffe GJ, Steuer ER, Toth CA, Fekrat S, et al. Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid-gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration. Am J Ophthalmol. 2001;131:208–15.

Article  CAS  PubMed  Google Scholar 

Inoue M, Shiraga F, Shirakata Y, Morizane Y, Kimura S, Hirataka A. Subretinal injection of recombinant tissue plasminogen activator for submacular hemorrhage associated with ruptured retinal arterial macroaneurysm. Graefes Arch Clin Exp Ophthalmol. 2015;253:1663–9.

Article  CAS  PubMed  Google Scholar 

Kimura S, Morizane Y, Hosokawa M, Shiode Y, Kawata T, Doi S et al. Submacular hemorrhage in polypoidal choroidal vasculopathy treated by vitrectomy and subretinal tissue plasminogen activator. Am J Ophthalmol. 2015;159:683-9.e1.

Doi S, Kimura S, Morizane Y, Hosokawa M, Shiode Y, Hirano M, et al. Adverse effect of macular intraretinal hemorrhage on the prognosis of submacular hemorrhage due to retinal arterial macroaneurysm rupture. Retina. 2020;40:989–97.

Article  CAS  PubMed  Google Scholar 

Doi S, Kimura S, Saito S, Inoue M, Sakuria T, Kobori A, et al. Impact of macular intraretinal hemorrhage and macular hole on the visual prognosis of submacular hemorrhage due to retinal arterial macroaneurysm rupture. Retina. 2023;43:585–93.

Article  CAS  PubMed  Google Scholar 

Ogura Y, Takanashi T, Ishigooka H, Ogino N. Quantitative analysis of lens changes after vitrectomy by fluorophotometry. Am J Ophthalmol. 1991;111:179–83.

Article  CAS  PubMed  Google Scholar 

Thompson JT, Glaser BM, Sjaarda RN, Murphy RP. Progression of nuclear sclerosis and long-term visual results of vitrectomy with transforming growth factor beta-2 for macular holes. Am J Ophthalmol. 1995;119:48–54.

Article  CAS  PubMed  Google Scholar 

Scharwey K, Pavlovic S, Jacobi KW. Combined clear corneal phacoemulsification, vitreoretinal surgery, and intraocular lens implantation. J Cataract Refract Surg. 1999;25:693–8.

Article  CAS  PubMed  Google Scholar 

McAlinden C, Wang Q, Gao R, Zhao W, Yu A, Li Y, Guo Y, et al. Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol. 2017;173:64–9.

Huang J, Chen H, Li Y, Chen Z, Gao R, Yu J, et al. Comprehensive comparison of axial length measurement with three swept-source OCT-based biometers and partial coherence interferometry. J Refract Surg. 2019;35:115–20.

Article  PubMed  Google Scholar 

Sato T, Korehisa H, Shibata S, Hayashi K. Prospective comparison of intraocular lens dynamics and refractive error between phacovitrectomy and phacoemulsification alone. Ophthalmol Retina. 2020;4:700–7.

Article  PubMed  Google Scholar 

Tamaoki A, Kojima T, Hasegawa A, Yamamoto M, Kaga T, Tanaka K, et al. Evaluation of axial length measurement using enhanced retina visualization mode of the swept-source optical coherence tomography biometer in dense cataract. Ophthalmic Res. 2021;64:595–603.

Article  PubMed  Google Scholar 

Kim YK, Woo SJ, Hyon JY, Ahn J, Park KH. Refractive outcomes of combined phacovitrectomy and delayed cataract surgery in retinal detachment. Can J Ophthalmol. 2015;50:360–6.

Article  PubMed  Google Scholar 

Rahman R, Kolb S, Bong CX, Stephenson J. Accuracy of user-adjusted axial length measurements with optical biometry in eyes having combined phacovitrectomy for macular-off rhegmatogenous retinal detachment. J Cataract Refract Surg 2016;42:1009–14.

Abou-Shousha M, Helaly HA, Osman IM. The accuracy of axial length measurements in cases of macula-off retinal detachment. Can J Ophthalmol. 2016;51:108–12.

Article  PubMed  Google Scholar 

Pongsachareonnont P, Tangjanyatam S. Accuracy of axial length measurements obtained by optical biometry and acoustic biometry in rhegmatogenous retinal detachment: a prospective study. Clin Ophthalmol. 2018;12:973–80.

Article  PubMed  PubMed Central  Google Scholar 

El-Khayat AR, Brent AJ, Peart SA, Chaudhuri PR. Accuracy of intraocular lens calculations based on fellow-eye biometry for phacovitrectomy for macula-off rhegmatogenous retinal detachments. Eye (Lond). 2019;33:1756–61.

Article  PubMed  Google Scholar 

Kimura S, Hosokawa MM, Shiode Y, Matoba R, Kanzaki Y, Goto Y, et al. Accuracy of ultrasound vs. fourier-domain optic biometry for measuring preoperative axial length in cases of rhegmatogenous retinal detachment. Jpn J Ophthalmol. 2023;67:645–51.

Article  CAS  PubMed  Google Scholar 

Manvikar SR, Allen D, Steel DHW. Optical biometry in combined phacovitrectomy. J Cataract Refract Surg. 2009;35:64–9.

Article  PubMed  Google Scholar 

Jeoung JW, Chung H, Yu HG. Factors influencing refractive outcomes after combined phacoemulsification and pars plana vitrectomy. Results of a prospective study. J Cataract Refract Surg. 2007;33:108–14.

Article  PubMed  Google Scholar 

Iwase T, Sugiyama K. Investigation of the stability of one-piece acrylic intraocular lenses in cataract surgery and in combined vitrectomy surgery. Br J Ophthalmol. 2006;90:1519–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahman R, Bong CX, Stephenson J. Accuracy of intraocular lens power estimation in eyes having phacovitrectomy for rhegmatogenous retinal detachment. Retina. 2014;34:1415–20.

Article  PubMed  Google Scholar 

Huang C, Zhang T, Liu J, Ji Q, Tan R. Changes in axial length, central cornea thickness, and anterior chamber depth after rhegmatogenous retinal detachment repair. BMC Ophthalmol. 2016;16:121.

Article  PubMed  PubMed Central  Google Scholar 

Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Optical biometry-based intraocular lens calculation and refractive outcomes after phacovitrectomy for rhegmatogenous retinal detachment and epiretinal membrane. Sci Rep. 2018;8:11319.

Article  PubMed  PubMed Central  Google Scholar 

Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Effect of gas tamponade on the intraocular lens position and refractive error after phacovitrectomy: a swept-source anterior segment OCT analysis. Ophthalmology. 2020;127:511–5.

Article  PubMed  Google Scholar 

Mizushima Y, Kawana K, Suto C, Shimamura E, Fukuyama M, Ohshika T. Evaluation of axial length measurement with new partial coherence interferometry OA-1000. Japanese J Ophthalmic Surg. 2010;23:453–7. (in Japanese).

Google Scholar 

Kimura S, Morizane Y, Matoba R, Hosokawa M, Shiode Y, Hirano M, et al. Retinal sensitivity after displacement of submacular hemorrhage due to polypoidal choroidal vasculopathy: effectiveness and safety of subretinal tissue plasminogen activator. Jpn J Ophthalmol. 2017;61:472–8.

Article  CAS  PubMed  Google Scholar 

Okanouchi T, Toshima S, Kimura S, Morizane Y, Shiraga F. Novel technique for subretinal injection using local removal of the internal limiting membrane. Retina. 2016;36:1035–8.

Article  PubMed  Google Scholar 

Eleftheriadis H. IOLMaster biometry: refractive results of 100 consecutive cases. Br J Ophthalmol. 2003;87:960–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rose MBBS, Moshegov Franzco LT. Comparison of the Zeiss IOLMaster and applanation A-Scan ultrasound: biometry for intraocular lens calculation. Clin Exp Ophthalmol. 2003;31:121–4.

Article  PubMed  Google Scholar 

Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85:472–85.

Article  PubMed  Google Scholar 

De Bernardo M, Zeppa L, Forte R, Cennamo M, Caliendo L, Zeppa L, et al. Can we use the fellow eye biometric data to predict IOL power? Semin Ophthalmol. 2017;32:363–70.

Article  PubMed  Google Scholar 

Crossland MD, Engel SAm Legge GE. The preferred retinal locus in macular disease: toward a consensus definition. Retina. 2011;31:2109–14.

Article  PubMed 

留言 (0)

沒有登入
gif