Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye: an atlas and textbook. 1st ed. Philadelphia: WB Saunders Company; 1971. p. 136–78.
Kawali A, Pichi F, Avadhani K, Invernizzi A, Hashimoto Y, Mahendradas P. Multimodal imaging of the normal eye. Ocul Immunol Inflamm. 2017;25:721–31.
Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology. 2014;121:1572–8.
Carreon T, van der Merwe E, Fellman RL, Johnstone M, Bhattacharya SK. Aqueous outflow-A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res. 2017;57:108–33.
Teng CC, Paton RT, Katzin HM. Primary degeneration in the vicinity of the chamber angle; as an etiologic factor in wide-angle glaucoma. Am J Ophthalmol. 1955;40:619–31.
Article PubMed CAS Google Scholar
Hann CR, Vercnocke AJ, Bentley MD, Jorgensen SM, Fautsch MP. Anatomic changes in Schlemm’s canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures. Invest Ophthalmol Vis Sci. 2014;55:5834–41.
Article PubMed PubMed Central Google Scholar
Ascher KW. Aqueous veins*: preliminary note. Am J Ophthalmol. 1942;25:31–8.
Goldmann H. Abfluss des Kammerwassers beim Menschen [Drainage of aqueous humor in humans]. Ophthalmologica. 1946;111:146–52 (in German).
Article PubMed CAS Google Scholar
Hariri S, Johnstone M, Jiang Y, Padilla S, Zhou Z, Reif R, et al. Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography. J Biomed Opt. 2014;19: 106013.
Article PubMed PubMed Central Google Scholar
Tan JCH, Gonzalez JM Jr, Hamm-Alvarez S, Song J. In situ autofluorescence visualization of human trabecular meshwork structure. Invest Ophthalmol Vis Sci. 2012;53:2080–8.
Article PubMed PubMed Central Google Scholar
Gonzalez JM Jr, Heur M, Tan JCH. Two-photon immunofluorescence characterization of the trabecular meshwork in situ. Invest Ophthalmol Vis Sci. 2012;53:3395–404.
Article PubMed PubMed Central Google Scholar
Huang AS, Gonzalez JM Jr, Le PV, Heur M, Tan JCH. Sources of structural autofluorescence in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 2013;54:4813–20.
Article PubMed PubMed Central Google Scholar
Kagemann L, Wollstein G, Sigal IA, Folio LS, Xu J, et al. 3D visualization of aqueous humor outflow structures in-situ in humans. Exp Eye Res. 2011;93:308–15.
Article PubMed PubMed Central CAS Google Scholar
Yoshikawa M, Akagi T, Nakanishi H, Kameda T, Suda K, Ohashi Ikeda H, et al. Pilot study assessing the structural changes in posttrabecular aqueous humor outflow pathway after trabecular meshwork surgery using swept-source optical coherence tomography. PLoS ONE. 2018;13(6): e0199739.
Article PubMed PubMed Central Google Scholar
Akagi T, Uji A, Okamoto Y, Suda K, Kameda T, Nakanishi H, et al. Anterior segment optical coherence tomography angiography imaging of conjunctiva and intrasclera in treated primary open-angle glaucoma. Am J Ophthalmol. 2019;208:313–22.
Okamoto Y, Akagi T, Kameda T, Suda K, Miyake M, Ohashi Ikeda H, et al. Prediction of trabecular meshwork-targeted micro-invasive glaucoma surgery outcomes using anterior segment OCT angiography. Sci Rep. 2021;11:17850.
Article PubMed PubMed Central CAS Google Scholar
Okamoto Y, Akagi T, Kameda T, Suda K, Miyake M, Ohashi Ikeda H, et al. Changes in the deep vasculature assessed using anterior segment OCT angiography following trabecular meshwork targeted minimally invasive glaucoma surgery. Sci Rep. 2022;12:17187.
Article PubMed PubMed Central CAS Google Scholar
Aoyagi Y, Kawakami R, Osanai H, Hibi T, Nemoto T. A rapid optical clearing protocol using 2,2’-thiodiethanol for microscopic observation of fixed mouse brain. PLoS ONE. 2015;10: e0116280.
Article PubMed PubMed Central Google Scholar
Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157:726–39.
Article PubMed CAS Google Scholar
Dodt HU, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 2007;4:331–6.
Article PubMed CAS Google Scholar
Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012;7:1983–95.
Ke MT, Fujimoto S, Imai T. SeeDB. A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 2013;16:1154–61.
Article PubMed CAS Google Scholar
Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature. 2013;497:332–7.
Article PubMed PubMed Central CAS Google Scholar
Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW. 2,2’-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech. 2007;70:1–9.
Article PubMed CAS Google Scholar
Sekitani T, Yokota T, Kuribara K, Kaltenbrunner M, Fukushima T, Inoue Y, et al. Ultraflexible organic amplifier with biocompatible gel electrodes. Nat Commun. 2016;7:11425.
Article PubMed PubMed Central CAS Google Scholar
Mizutani H, Ono S, Ushiku T, Kudo Y, Ikemura M, Kageyama N, et al. Transparency-enhancing technology allows three-dimensional assessment of gastrointestinal mucosa: a porcine model. Pathol Int. 2018;68:102–8.
Article PubMed CAS Google Scholar
Asahina Y, Hinata M, Tanaka A, Aihara M, Onodera H, Ushiku H. 3D assessment of sebaceous carcinoma of the eyelid based on digitized hematoxylin-eosin staining images using transparency-enhancing technology. Nippon Ganka Gakkai Zasshi. 2023;127:1110–8 (in Japanese).
Asahina Y, Hinata M, Tanaka M, Oshio K, Ogawa H, Aihara M, et al. Transparency-enhancing technology allows the three-dimensional assessment of esophageal carcinoma obtained by endoscopic submucosal dissection. Esophagus. 2024;21:405–9.
Article PubMed PubMed Central Google Scholar
Lauter G, Söll I, Hauptmann G. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain. Neural Dev. 2011;6:10.
留言 (0)