Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA: a cancer journal for clinicians 73 (2023).
Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA: a cancer journal for clinicians 74 (2024).
Costamagna, G. et al. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease. Gastroenterology 123, 999–1005 (2002).
Lee, J. et al. Risk factors of missed colorectal lesions after colonoscopy. Medicine 96, e7468 (2017).
Article PubMed PubMed Central Google Scholar
Holzheimer, R. G. & Mannick, J. A. Surgical treatment: evidence-based and problem-oriented (2001).
Alexandre, L. A., Nobre, N. & Casteleiro, J. Color and position versus texture features for endoscopic polyp detection, Vol. 2, 38–42 (IEEE, 2008).
Iakovidis, D. K., Maroulis, D. E., Karkanis, S. A. & Brokos, A. A comparative study of texture features for the discrimination of gastric polyps in endoscopic video, 575–580 (IEEE, 2005).
Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras, D. A. & Tzivras, M. Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE transactions on information technology in biomedicine 7, 141–152 (2003).
Mamonov, A. V., Figueiredo, I. N., Figueiredo, P. N. & Tsai, Y.-H. R. Automated polyp detection in colon capsule endoscopy. IEEE transactions on medical imaging 33, 1488–1502 (2014).
Hwang, S., Oh, J., Tavanapong, W., Wong, J. & De Groen, P. C. Polyp detection in colonoscopy video using elliptical shape feature, Vol. 2, II–465 (IEEE, 2007).
Tajbakhsh, N., Gurudu, S. R. & Liang, J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE transactions on medical imaging 35, 630–644 (2015).
Guo, X. et al. Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning. Medical Physics 46, 5666–5676 (2019).
Nanni, L., Fantozzi, C., Loreggia, A. & Lumini, A. Ensembles of convolutional neural networks and transformers for polyp segmentation. Sensors 23, 4688 (2023).
Article PubMed PubMed Central Google Scholar
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation, 234–241 (Springer, 2015).
Badrinarayanan, V., Kendall, A. & Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence 39, 2481–2495 (2017).
Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N. & Liang, J. Unet++: A nested u-net architecture for medical image segmentation, 3–11 (Springer, 2018).
Banik, D., Roy, K., Bhattacharjee, D., Nasipuri, M. & Krejcar, O. Polyp-net: A multimodel fusion network for polyp segmentation. IEEE Transactions on Instrumentation and Measurement 70, 1–12 (2020).
Oukdach, Y. et al. Uvit-seg: An efficient vit and u-net-based framework for accurate colorectal polyp segmentation in colonoscopy and wce images. Journal of Imaging Informatics in Medicine 1–21 (2024).
Iwahori, Y. et al. Automatic detection of polyp using hessian filter and hog features. Procedia computer science 60, 730–739 (2015).
Jain, S. et al. Detection of abnormality in wireless capsule endoscopy images using fractal features. Computers in biology and medicine 127, 104094 (2020).
Sánchez-González, A., García-Zapirain, B., Sierra-Sosa, D. & Elmaghraby, A. Automatized colon polyp segmentation via contour region analysis. Computers in biology and medicine 100, 152–164 (2018).
Li, B. & Meng, M. Q.-H. Automatic polyp detection for wireless capsule endoscopy images. Expert Systems with Applications 39, 10952–10958 (2012).
Patel, K., Bur, A. M. & Wang, G. Enhanced u-net: A feature enhancement network for polyp segmentation, 181–188 (IEEE, 2021).
Mahmud, T., Paul, B. & Fattah, S. A. Polypsegnet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Computers in biology and medicine 128, 104119 (2021).
Jha, D. et al. Resunet++: An advanced architecture for medical image segmentation, 225–2255 (IEEE, 2019).
Zhou, T. et al. Cross-level feature aggregation network for polyp segmentation. Pattern Recognition 140, 109555 (2023).
Yeung, M., Sala, E., Schönlieb, C.-B. & Rundo, L. Focus u-net: A novel dual attention-gated cnn for polyp segmentation during colonoscopy. Computers in biology and medicine 137, 104815 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bhattacharya, D., Betz, C., Eggert, D. & Schlaefer, A. Dual parallel reverse attention edge network: Dpra-edgenet. Nordic Machine Intelligence 1, 8–10 (2021).
Ta, N., Chen, H., Lyu, Y. & Wu, T. Ble-net: boundary learning and enhancement network for polyp segmentation. Multimedia Systems 29, 3041–3054 (2023).
Liu, G. et al. Cafe-net: Cross-attention and feature exploration network for polyp segmentation. Expert Systems with Applications 238, 121754 (2024).
Alam, M. J. & Fattah, S. A. Sr-attnet: An interpretable stretch–relax attention based deep neural network for polyp segmentation in colonoscopy images. Computers in Biology and Medicine 160, 106945 (2023).
Song, P., Li, J. & Fan, H. Attention based multi-scale parallel network for polyp segmentation. Computers in Biology and Medicine 146, 105476 (2022).
Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021).
Park, K.-B. & Lee, J. Y. Swine-net: Hybrid deep learning approach to novel polyp segmentation using convolutional neural network and swin transformer. Journal of Computational Design and Engineering 9, 616–632 (2022).
Lin, L., Lv, G., Wang, B., Xu, C. & Liu, J. Polyp-lvt: Polyp segmentation with lightweight vision transformers. Knowledge-Based Systems 300, 112181 (2024).
Goceri, E. Polyp segmentation using a hybrid vision transformer and a hybrid loss function. Journal of Imaging Informatics in Medicine 37, 851–863 (2024).
Article PubMed PubMed Central Google Scholar
Liu, X. & Song, S. Attention combined pyramid vision transformer for polyp segmentation. Biomedical Signal Processing and Control 89, 105792 (2024).
Yue, G. et al. Boundary uncertainty aware network for automated polyp segmentation. Neural Networks 170, 390–404 (2024).
Hu, K. et al. Ppnet: Pyramid pooling based network for polyp segmentation. Computers in Biology and Medicine 160, 107028 (2023).
Article CAS PubMed Google Scholar
Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
Woo, S., Park, J., Lee, J.-Y. & Kweon, I. S. Cbam: Convolutional block attention module, 3–19 (2018).
Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017).
Lee, S. H., Lee, S. & Song, B. C. Vision transformer for small-size datasets. arXiv preprint arXiv:2112.13492 (2021).
Li, D. et al. Involution: Inverting the inherence of convolution for visual recognition, 12321–12330 (2021).
Bernal, J. et al. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized medical imaging and graphics 43, 99–111 (2015).
Jha, D. et al. Kvasir-seg: A segmented polyp dataset, 451–462 (Springer, 2020).
Vázquez, D. et al. A benchmark for endoluminal scene segmentation of colonoscopy images. Journal of healthcare engineering 2017, 4037190 (2017).
Article PubMed PubMed Central Google Scholar
Silva, J., Histace, A., Romain, O., Dray, X. & Granado, B. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. International journal of computer assisted radiology and surgery 9, 283–293 (2014).
Xiao, X., Lian, S., Luo, Z. & Li, S. Weighted res-unet for high-quality retina vessel segmentation, 327–331 (IEEE, 2018).
Ibtehaz, N. & Rahman, M. S. Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural networks 121, 74–87 (2020).
Oktay, O. et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018).
Fang, Y., Chen, C., Yuan, Y. & Tong, K.-y. Selective feature aggregation network with area-boundary constraints for polyp segmentation, 302–310 (Springer, 2019).
Fan, D.-P. et al. Pranet: Parallel reverse attention network for polyp segmentation, 263–273 (Springer, 2020).
Huang, C.-H., Wu, H.-Y. & Lin, Y.-L. Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint arXiv:2101.07172 (2021).
Lou, A., Guan, S. & Loew, M. Caranet: context axial reverse attention network for segmentation of small medical objects. Journal of Medical Imaging 10, 014005–014005 (2023).
Article PubMed PubMed Central Google Scholar
Lu, L., Chen, S., Tang, H., Zhang, X. & Hu, X. A multi-scale perceptual polyp segmentation network based on boundary guidance. Image and Vision Computing 138, 104811 (2023).
Jain, S. et al. Coinnet: A convolution-involution network with a novel statistical attention for automatic polyp segmentation. IEEE Transactions
留言 (0)