InCoLoTransNet: An Involution-Convolution and Locality Attention-Aware Transformer for Precise Colorectal Polyp Segmentation in GI Images

Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA: a cancer journal for clinicians 73 (2023).

Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA: a cancer journal for clinicians 74 (2024).

Costamagna, G. et al. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease. Gastroenterology 123, 999–1005 (2002).

Article  PubMed  Google Scholar 

Lee, J. et al. Risk factors of missed colorectal lesions after colonoscopy. Medicine 96, e7468 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Holzheimer, R. G. & Mannick, J. A. Surgical treatment: evidence-based and problem-oriented (2001).

Alexandre, L. A., Nobre, N. & Casteleiro, J. Color and position versus texture features for endoscopic polyp detection, Vol. 2, 38–42 (IEEE, 2008).

Iakovidis, D. K., Maroulis, D. E., Karkanis, S. A. & Brokos, A. A comparative study of texture features for the discrimination of gastric polyps in endoscopic video, 575–580 (IEEE, 2005).

Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras, D. A. & Tzivras, M. Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE transactions on information technology in biomedicine 7, 141–152 (2003).

Article  PubMed  Google Scholar 

Mamonov, A. V., Figueiredo, I. N., Figueiredo, P. N. & Tsai, Y.-H. R. Automated polyp detection in colon capsule endoscopy. IEEE transactions on medical imaging 33, 1488–1502 (2014).

Article  PubMed  Google Scholar 

Hwang, S., Oh, J., Tavanapong, W., Wong, J. & De Groen, P. C. Polyp detection in colonoscopy video using elliptical shape feature, Vol. 2, II–465 (IEEE, 2007).

Tajbakhsh, N., Gurudu, S. R. & Liang, J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE transactions on medical imaging 35, 630–644 (2015).

Article  PubMed  Google Scholar 

Guo, X. et al. Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning. Medical Physics 46, 5666–5676 (2019).

Article  PubMed  Google Scholar 

Nanni, L., Fantozzi, C., Loreggia, A. & Lumini, A. Ensembles of convolutional neural networks and transformers for polyp segmentation. Sensors 23, 4688 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation, 234–241 (Springer, 2015).

Badrinarayanan, V., Kendall, A. & Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence 39, 2481–2495 (2017).

Article  PubMed  Google Scholar 

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N. & Liang, J. Unet++: A nested u-net architecture for medical image segmentation, 3–11 (Springer, 2018).

Banik, D., Roy, K., Bhattacharjee, D., Nasipuri, M. & Krejcar, O. Polyp-net: A multimodel fusion network for polyp segmentation. IEEE Transactions on Instrumentation and Measurement 70, 1–12 (2020).

Article  Google Scholar 

Oukdach, Y. et al. Uvit-seg: An efficient vit and u-net-based framework for accurate colorectal polyp segmentation in colonoscopy and wce images. Journal of Imaging Informatics in Medicine 1–21 (2024).

Iwahori, Y. et al. Automatic detection of polyp using hessian filter and hog features. Procedia computer science 60, 730–739 (2015).

Article  Google Scholar 

Jain, S. et al. Detection of abnormality in wireless capsule endoscopy images using fractal features. Computers in biology and medicine 127, 104094 (2020).

Article  PubMed  Google Scholar 

Sánchez-González, A., García-Zapirain, B., Sierra-Sosa, D. & Elmaghraby, A. Automatized colon polyp segmentation via contour region analysis. Computers in biology and medicine 100, 152–164 (2018).

Article  PubMed  Google Scholar 

Li, B. & Meng, M. Q.-H. Automatic polyp detection for wireless capsule endoscopy images. Expert Systems with Applications 39, 10952–10958 (2012).

Article  Google Scholar 

Patel, K., Bur, A. M. & Wang, G. Enhanced u-net: A feature enhancement network for polyp segmentation, 181–188 (IEEE, 2021).

Mahmud, T., Paul, B. & Fattah, S. A. Polypsegnet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Computers in biology and medicine 128, 104119 (2021).

Article  PubMed  Google Scholar 

Jha, D. et al. Resunet++: An advanced architecture for medical image segmentation, 225–2255 (IEEE, 2019).

Zhou, T. et al. Cross-level feature aggregation network for polyp segmentation. Pattern Recognition 140, 109555 (2023).

Article  Google Scholar 

Yeung, M., Sala, E., Schönlieb, C.-B. & Rundo, L. Focus u-net: A novel dual attention-gated cnn for polyp segmentation during colonoscopy. Computers in biology and medicine 137, 104815 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharya, D., Betz, C., Eggert, D. & Schlaefer, A. Dual parallel reverse attention edge network: Dpra-edgenet. Nordic Machine Intelligence 1, 8–10 (2021).

Article  Google Scholar 

Ta, N., Chen, H., Lyu, Y. & Wu, T. Ble-net: boundary learning and enhancement network for polyp segmentation. Multimedia Systems 29, 3041–3054 (2023).

Article  Google Scholar 

Liu, G. et al. Cafe-net: Cross-attention and feature exploration network for polyp segmentation. Expert Systems with Applications 238, 121754 (2024).

Article  Google Scholar 

Alam, M. J. & Fattah, S. A. Sr-attnet: An interpretable stretch–relax attention based deep neural network for polyp segmentation in colonoscopy images. Computers in Biology and Medicine 160, 106945 (2023).

Article  PubMed  Google Scholar 

Song, P., Li, J. & Fan, H. Attention based multi-scale parallel network for polyp segmentation. Computers in Biology and Medicine 146, 105476 (2022).

Article  PubMed  Google Scholar 

Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021).

Park, K.-B. & Lee, J. Y. Swine-net: Hybrid deep learning approach to novel polyp segmentation using convolutional neural network and swin transformer. Journal of Computational Design and Engineering 9, 616–632 (2022).

Article  Google Scholar 

Lin, L., Lv, G., Wang, B., Xu, C. & Liu, J. Polyp-lvt: Polyp segmentation with lightweight vision transformers. Knowledge-Based Systems 300, 112181 (2024).

Article  Google Scholar 

Goceri, E. Polyp segmentation using a hybrid vision transformer and a hybrid loss function. Journal of Imaging Informatics in Medicine 37, 851–863 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Liu, X. & Song, S. Attention combined pyramid vision transformer for polyp segmentation. Biomedical Signal Processing and Control 89, 105792 (2024).

Article  Google Scholar 

Yue, G. et al. Boundary uncertainty aware network for automated polyp segmentation. Neural Networks 170, 390–404 (2024).

Article  PubMed  Google Scholar 

Hu, K. et al. Ppnet: Pyramid pooling based network for polyp segmentation. Computers in Biology and Medicine 160, 107028 (2023).

Article  CAS  PubMed  Google Scholar 

Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Woo, S., Park, J., Lee, J.-Y. & Kweon, I. S. Cbam: Convolutional block attention module, 3–19 (2018).

Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017).

Lee, S. H., Lee, S. & Song, B. C. Vision transformer for small-size datasets. arXiv preprint arXiv:2112.13492 (2021).

Li, D. et al. Involution: Inverting the inherence of convolution for visual recognition, 12321–12330 (2021).

Bernal, J. et al. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized medical imaging and graphics 43, 99–111 (2015).

Jha, D. et al. Kvasir-seg: A segmented polyp dataset, 451–462 (Springer, 2020).

Vázquez, D. et al. A benchmark for endoluminal scene segmentation of colonoscopy images. Journal of healthcare engineering 2017, 4037190 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Silva, J., Histace, A., Romain, O., Dray, X. & Granado, B. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. International journal of computer assisted radiology and surgery 9, 283–293 (2014).

Article  PubMed  Google Scholar 

Xiao, X., Lian, S., Luo, Z. & Li, S. Weighted res-unet for high-quality retina vessel segmentation, 327–331 (IEEE, 2018).

Ibtehaz, N. & Rahman, M. S. Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural networks 121, 74–87 (2020).

Article  PubMed  Google Scholar 

Oktay, O. et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018).

Fang, Y., Chen, C., Yuan, Y. & Tong, K.-y. Selective feature aggregation network with area-boundary constraints for polyp segmentation, 302–310 (Springer, 2019).

Fan, D.-P. et al. Pranet: Parallel reverse attention network for polyp segmentation, 263–273 (Springer, 2020).

Huang, C.-H., Wu, H.-Y. & Lin, Y.-L. Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint arXiv:2101.07172 (2021).

Lou, A., Guan, S. & Loew, M. Caranet: context axial reverse attention network for segmentation of small medical objects. Journal of Medical Imaging 10, 014005–014005 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Lu, L., Chen, S., Tang, H., Zhang, X. & Hu, X. A multi-scale perceptual polyp segmentation network based on boundary guidance. Image and Vision Computing 138, 104811 (2023).

Article  Google Scholar 

Jain, S. et al. Coinnet: A convolution-involution network with a novel statistical attention for automatic polyp segmentation. IEEE Transactions

留言 (0)

沒有登入
gif