FadA antigen of Fusobacterium nucleatum: implications for ceRNA network in colorectal cancer and adenomatous polyps progression

Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Trans Oncol. 2021;14(10): 101174.

Article  Google Scholar 

Hossain MS, et al. Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers. 2022;14(7):1732.

Article  PubMed  PubMed Central  Google Scholar 

Vacante M, et al. Gut microbiota and colorectal cancer development: a closer look to the adenoma-carcinoma sequence. Biomedicines. 2020;8(11):1–19.

Article  Google Scholar 

Loke YL, et al. Colon carcinogenesis: the interplay between diet and gut microbiota. Front Cell Infect Microbiol. 2020. https://doi.org/10.3389/fcimb.2020.603086.

Article  PubMed  PubMed Central  Google Scholar 

Dokht Khosravi A, et al. The role of microbiota in colorectal cancer. Folia Microbiol. 2022;67(5):683–91.

Article  CAS  Google Scholar 

Sánchez-Alcoholado L, et al. Relationships of gut microbiota composition, short-chain fatty acids and polyamines with the pathological response to neoadjuvant radiochemotherapy in colorectal cancer patients. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22179549.

Article  PubMed  PubMed Central  Google Scholar 

Shang FM, Liu HL. Fusobacterium nucleatum and colorectal cancer: a review. World J Gastrointest Oncol. 2018. https://doi.org/10.4251/wjgo.v10.i3.71.

Article  PubMed  PubMed Central  Google Scholar 

Ray K. Colorectal cancer: fusobacterium nucleatum found in colon cancer tissue—could an infection cause colorectal cancer? Nat Rev Gastroenterol Hepatol. 2011. https://doi.org/10.1038/nrgastro.2011.208.

Article  PubMed  Google Scholar 

Flanagan L, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33(8):1381–90.

Article  PubMed  CAS  Google Scholar 

Datorre JG, et al. The role of fusobacterium nucleatum in colorectal carcinogenesis. Pathobiology. 2021;88(2):127–40.

Article  PubMed  CAS  Google Scholar 

Mima K, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65(12):1973–80.

Article  PubMed  CAS  Google Scholar 

Chen Y, et al. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics. 2020;10(1):323–39.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu MR, Kim HJ, Park HR. Fusobacterium nucleatum accelerates the progression of colitis-associated colorectal cancer by promoting emt. Cancers. 2020;12(10):1–19.

Article  Google Scholar 

Han YW, et al. Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol. 2005;187(15):5330–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu M, et al. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282(34):25000–9.

Article  PubMed  CAS  Google Scholar 

Li DH, et al. Fecal Fusobacterium nucleatum harbored virulence gene fadA are associated with ulcerative colitis and clinical outcomes. Microb Pathog. 2021. https://doi.org/10.1016/j.micpath.2021.104964.

Article  PubMed  PubMed Central  Google Scholar 

Rubinstein MR, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe. 2013;14(2):195–206.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo P, et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res. 2020;39:1–13.

Article  Google Scholar 

Rubinstein MR, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. 2019. https://doi.org/10.15252/embr.201847638.

Article  PubMed  PubMed Central  Google Scholar 

Liu NQ, et al. The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression. Nat Commun. 2017;8(1):14418.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun T, Zhang J. ETV4 mediates the Wnt/β-catenin pathway through transcriptional activation of ANXA2 to promote hepatitis B virus-associated liver hepatocellular carcinoma progression. J Biochem. 2021;170(5):663–73.

Article  PubMed  CAS  Google Scholar 

Sharma MC. Annexin A2 (ANX A2): an emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer. 2019;144(9):2074–81.

Article  PubMed  CAS  Google Scholar 

Xue W-H, et al. Construction of an oesophageal cancer-specific ceRNA network based on miRNA, lncRNA, and mRNA expression data. World J Gastroenterol. 2018;24(1):23.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao C et al. The construction and analysis of ceRNA networks in invasive breast cancer: a study based on The Cancer Genome Atlas. Cancer management and research. 2018; 1–11.

Hosseini FA et al. Long non‑coding RNA LINC00460 contributes as a potential prognostic biomarker through its oncogenic role with ANXA2 in colorectal polyps. Molecular Biology Reports. 2023; 1–11.

Gharib E, et al. IL-2RG as a possible immunotherapeutic target in CRC predicting poor prognosis and regulated by miR-7-5p and miR-26b-5p. J Transl Med. 2024;22(1):439.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chandrashekar DS, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao H, et al. LncTarD 20: an updated comprehensive database for experimentally-supported functional lncRNA-target regulations in human diseases. Nucleic Acids Res. 2023;51(D1):D199-d207.

Article  PubMed  CAS  Google Scholar 

Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics: from standards to applications, 2011;291–303.

Liang Q, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 2017;23(8):2061–70.

Article  PubMed  CAS  Google Scholar 

Zhou Z, et al. Vanillin derivatives reverse fusobacterium nucleatum-induced proliferation and migration of colorectal cancer through E-Cadherin/β-catenin pathway. Front Pharmacol. 2022;13(March):1–11.

Google Scholar 

Rezasoltani S, et al. Applying simple linear combination, multiple logistic and factor analysis methods for candidate fecal bacteria as novel biomarkers for early detection of adenomatous polyps and colon cancer. J Microbiol Methods. 2018;155:82–8.

Article  PubMed  CAS  Google Scholar 

Rezasoltani S, et al. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb Pathog. 2018;124:244–9.

Article  PubMed  Google Scholar 

Rezasoltani S, et al. APC and AXIN2 are promising biomarker candidates for the early detection of adenomas and hyperplastic polyps. Cancer Inform. 2020. https://doi.org/10.1177/1176935120972383.

Article  PubMed  PubMed Central  Google Scholar 

Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.

Article  PubMed 

留言 (0)

沒有登入
gif