Mutual causal effects between immune cells and hepatocellular carcinoma: a Mendelian randomization study

Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2016;2:16018. https://doi.org/10.1038/nrdp.2016.18.

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

Article  Google Scholar 

McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(Suppl 1):4–13. https://doi.org/10.1002/hep.31288.

Article  CAS  Google Scholar 

Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol. 2021;18(1):112–27. https://doi.org/10.1038/s41423-020-00572-w.

Article  CAS  Google Scholar 

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology. 2013;57(4):1654–62. https://doi.org/10.1002/hep.26115.

Article  CAS  PubMed  Google Scholar 

Maini MK, Peppa D. NK cells: a double-edged sword in chronic hepatitis B virus infection. Front Immunol. 2013;4:57. https://doi.org/10.3389/fimmu.2013.00057.

Article  CAS  PubMed Central  Google Scholar 

Zenewicz LA, Yancopoulos GD, Valenzuela DM, et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity. 2007;27(4):647–59. https://doi.org/10.1016/j.immuni.2007.07.023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho HJ, Cheong JY. Role of immune cells in patients with hepatitis B virus-related hepatocellular carcinoma. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22158011.

Article  Google Scholar 

Shang N, Figini M, Shangguan J, et al. Dendritic cells based immunotherapy. Am J Cancer Res. 2017;7(10):2091–102.

CAS  PubMed  PubMed Central  Google Scholar 

Hong GQ, Cai D, Gong JP, et al. Innate immune cells and their interaction with T cells in hepatocellular carcinoma. Oncol Lett. 2021;21(1):57. https://doi.org/10.3892/ol.2020.12319.

Article  CAS  Google Scholar 

Shibolet O, Alper R, Zlotogarov L, et al. NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer. 2003;106(2):236–43. https://doi.org/10.1002/ijc.11201.

Article  CAS  PubMed  Google Scholar 

Cheng JT, Deng YN, Yi HM, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis. 2016;5(2): e198. https://doi.org/10.1038/oncsis.2016.7.

Article  CAS  PubMed  Google Scholar 

Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98. https://doi.org/10.1093/hmg/ddu328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63. https://doi.org/10.1002/sim.3034.

Article  PubMed  Google Scholar 

Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study. BMC Psychiatry. 2023;23(1):590. https://doi.org/10.1186/s12888-023-05081-4.

Article  PubMed Central  Google Scholar 

Gu J, Yan GM, Kong XL, et al. Assessing the causal relationship between immune traits and systemic lupus erythematosus by bi-directional Mendelian randomization analysis. Mol Genet Genom MGG. 2023;298(6):1493–503. https://doi.org/10.1007/s00438-023-02071-9.

Article  CAS  Google Scholar 

Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–45. https://doi.org/10.1038/s41588-020-0684-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synthesis Methods. 2019;10(4):486–96. https://doi.org/10.1002/jrsm.1346.

Article  Google Scholar 

Ishigaki K, Akiyama M, Kanai M, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet. 2020;52(7):669–79. https://doi.org/10.1038/s41588-020-0640-3.

Article  CAS  PubMed Central  Google Scholar 

Sidore C, Busonero F, Maschio A, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47(11):1272–81. https://doi.org/10.1038/ng.3368.

Article  CAS  PubMed  Google Scholar 

Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26(5):2333–55. https://doi.org/10.1177/0962280215597579.

Article  Google Scholar 

Kashiwagi M, Imanishi T, Tsujioka H, et al. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis. 2010;212(1):171–6. https://doi.org/10.1016/j.atherosclerosis.2010.05.004.

Article  CAS  PubMed  Google Scholar 

Liu Y, Imanishi T, Ikejima H, et al. Association between circulating monocyte subsets and in-stent restenosis after coronary stent implantation in patients with ST-elevation myocardial infarction. Circ J. 2010;74(12):2585–91. https://doi.org/10.1253/circj.cj-10-0544.

Article  Google Scholar 

Pang L, Yeung OWH, Ng KTP, et al. Postoperative plasmacytoid dendritic cells secrete IFNα to promote recruitment of myeloid-derived suppressor cells and drive hepatocellular carcinoma recurrence. Can Res. 2022;82(22):4206–18. https://doi.org/10.1158/0008-5472.Can-22-1199.

Article  CAS  Google Scholar 

Sakuma M, Mimura K, Nakajima S, et al. A potential biomarker of dynamic change in peripheral CD45RA(-)CD27(+)CD127(+) central memory T cells for anti-PD-1 therapy in patients with esophageal squamous cell carcinoma. Cancers. 2023. https://doi.org/10.3390/cancers15143641.

Article  PubMed  Google Scholar 

Liu T, Tan J, Wu M, et al. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39(+)CD8(+) T cells. Gut. 2021;70(10):1965–77. https://doi.org/10.1136/gutjnl-2020-322196.

Article  CAS  Google Scholar 

Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48(2):202–13. https://doi.org/10.1016/j.immuni.2018.01.007.

Article  CAS  PubMed  Google Scholar 

Lu X, Yu P, Tao H, et al. Correlation between TOPA2A gene expression and the number of CD4(+) T cells in hepatocellular carcinoma and its clinical prognostic significance. Xi bao yu fen zi mian yi xue za zhi = Chin J Cell Mol Immunol. 2022;38(1):24–31.

Google Scholar 

Sun K, Wang L, Zhang Y. Dendritic cell as therapeutic vaccines against tumors and its role in therapy for hepatocellular carcinoma. Cell Mol Immunol. 2006;3(3):197–203.

CAS  PubMed  Google Scholar 

Streba LA, Streba CT, Săndulescu L, et al. Dendritic cells and hepatocellular carcinoma. Rom J Morphol Embryol = Revue roumaine de morphologie et embryologie. 2014;55(4):1287–93.

PubMed  Google Scholar 

Yang J, Yang Z, Zeng X, Yu S, Gao L, Jiang Y, Sun F. Benefits and harms of screening for hepatocellular carcinoma in high-risk populations: systematic review and meta-analysis. J Natl Cancer Cent. 2023;3(3):175–85. https://doi.org/10.1016/j.jncc.2023.02.001.

Article  PubMed Central 

留言 (0)

沒有登入
gif