Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).
Article CAS PubMed PubMed Central Google Scholar
Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).
Article CAS PubMed Google Scholar
Ascierto, P. A. et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 5, 187–194 (2019).
Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).
Article CAS PubMed Google Scholar
Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).
Article CAS PubMed PubMed Central Google Scholar
Knight, A., Karapetyan, L. & Kirkwood, J. M. Immunotherapy in melanoma: recent advances and future directions. Cancers 15, 1106 (2023).
Article CAS PubMed PubMed Central Google Scholar
Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).
Article CAS PubMed PubMed Central Google Scholar
Zong, W. X., Rabinowitz, J. D. & White, E. Mitochondria and cancer. Mol. Cell 61, 667–676 (2016).
Article CAS PubMed PubMed Central Google Scholar
Salhi, A. et al. Oxidative phosphorylation promotes primary melanoma invasion. Am. J. Pathol. 190, 1108–1117 (2020).
Article CAS PubMed PubMed Central Google Scholar
Andrzejewski, S. et al. PGC-1α promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab. 26, 778–787.e5 (2017).
Article CAS PubMed Google Scholar
El-Botty, R. et al. Oxidative phosphorylation is a metabolic vulnerability of endocrine therapy and palbociclib resistant metastatic breast cancers. Nat. Commun. 14, 4221 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zhao, R.-Z., Jiang, S., Zhang, L. & Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int. J. Mol. Med. 44, 3–15 (2019).
CAS PubMed PubMed Central Google Scholar
Luna Yolba, R. et al. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol. Res. Perspect. 9, e00854 (2021).
Article CAS PubMed PubMed Central Google Scholar
Naguib, A. et al. Mitochondrial complex I inhibitors expose a vulnerability for selective killing of Pten-null cells. Cell Rep. 23, 58–67 (2018).
Article CAS PubMed PubMed Central Google Scholar
Yoshida, J. et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience 24, 103497 (2021).
Article CAS PubMed PubMed Central Google Scholar
Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).
Article CAS PubMed Google Scholar
Vasan, K. & Chandel, N. S. Molecular and cellular mechanisms underlying the failure of mitochondrial metabolism drugs in cancer clinical trials. J. Clin. Invest. 134, e176736 (2024).
Article PubMed PubMed Central Google Scholar
Yap, T. A. et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat. Med. 29, 115–126 (2023).
Article CAS PubMed Google Scholar
Janku, F. et al. First-in-human evaluation of the novel mitochondrial complex I inhibitor ASP4132 for treatment of cancer. Invest. New Drugs 39, 1348–1356 (2021).
Article CAS PubMed Google Scholar
Lazarou, M., Thorburn, D. R., Ryan, M. T. & McKenzie, M. Assembly of mitochondrial complex I and defects in disease. Biochim. Biophys. Acta 1793, 78–88 (2009).
Article CAS PubMed Google Scholar
Stroud, D. A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).
Article CAS PubMed Google Scholar
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7, 1235–1246 (2012).
Article CAS PubMed Google Scholar
Balsa, E. et al. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat. Commun. 11, 2714 (2020).
Article CAS PubMed PubMed Central Google Scholar
Enns, G. M. et al. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status. PLoS ONE 9, e100001 (2014).
Article PubMed PubMed Central Google Scholar
Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).
Article CAS PubMed Google Scholar
Yang, K., Halima, A. & Chan, T. A. Antigen presentation in cancer—mechanisms and clinical implications for immunotherapy. Nat. Rev. Clin. Oncol. 20, 604–623 (2023).
Article CAS PubMed Google Scholar
Leone, P. et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J. Natl Cancer Inst. 105, 1172–1187 (2013).
Article CAS PubMed Google Scholar
Meissner, T. B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl Acad. Sci. USA 107, 13794–13799 (2010).
Article CAS PubMed PubMed Central Google Scholar
Moussa, P., Marton, J., Vidal, S. M. & Fodil-Cornu, N. Genetic dissection of NK cell responses. Front. Immunol. 3, 425 (2013).
Article PubMed PubMed Central Google Scholar
Yoshihama, S. et al. NLRC5/CITA expression correlates with efficient response to checkpoint blockade immunotherapy. Sci. Rep. 11, 3258 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yoshihama, S. et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc. Natl Acad. Sci. USA 113, 5999–6004 (2016).
留言 (0)