Global Potential Geographic Distribution of Anthonomus eugenii Under Climate Change: A Comprehensive Analysis Based on an Ensemble Modeling Approach

Acosta N, Vicente NE, Abreu E et al (1987) Chemical control of meloidogyne incognita, Rotylenchulus reniformis and Anthonomus eugenii in Capsicum annuum and C. frutescens. Nematropica 17:163–169. https://api.semanticscholar.org/CorpusID:82897678

Addesso KM, McAuslane HJ (2009) Pepper weevil attraction to volatiles from host and nonhost plants. Environ Entomol 38(1):216–224. https://doi.org/10.1603/022.038.0127

Article  PubMed  Google Scholar 

Adeleye VO, Seal DR, Liburd OE et al (2021) Pepper weevil, Anthonomus eugenii (Coleoptera: Curculionidae) suppression on jalapeño peppers using non-host insect repellent plants. Crop Prot. https://doi.org/10.1016/j.cropro.2021.105893

Article  Google Scholar 

Allouche O, Kadmon TR (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Article  Google Scholar 

Aragón W, López-Orona C, López A et al (2022) A rapid screening method for resistance to Anthonomus eugenii (Coleoptera: Curculionidae) in Capsicum (Solanaceae) spp. plants. Fla Entomol 105(2):101–107. https://doi.org/10.1653/024.105.0201

Article  Google Scholar 

Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22(1):42–47. https://doi.org/10.1016/j.tree.2006.09.010

Article  PubMed  Google Scholar 

Beaumont LJ, Gallagher RV, Downey PO et al (2009) Modelling the impact of Hieracium spp. on protected areas in Australia under future climates. Ecography 32(5):757–764. https://doi.org/10.1111/J.1600-0587.2009.05705.X

Article  Google Scholar 

Bell JF, Fielding AH (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. https://doi.org/10.1017/S0376892997000088

Article  Google Scholar 

Bradshaw CJ, Leroy B, Bellard C et al (2016) Massive yet grossly underestimated global costs of invasive insects. Nat Commun 7:12986. https://doi.org/10.1038/ncomms12986

Article  CAS  PubMed  PubMed Central  Google Scholar 

CABI (2019) Species Compendium, Tuta absoluta (tomato leafminer) datasheet. https://www.cabi.org/isc/datasheet/49260#toPictures

CABI (2022) Anthonomus eugenii (pepper weevil). CABI Compendium. https://doi.org/10.1079/cabicompendium.5732

Article  Google Scholar 

Cheng R, Wang X, Zhang J et al (2022) Predicting the potential suitable distribution of Larix principis-rupprechtii Mayr under climate change scenarios. Forests 13(9):1428. https://doi.org/10.3390/f13091428

Article  Google Scholar 

Costello RA, Gillespie DR (1993) The pepper weevil, Anthonomus eugenii Cano as a greenhouse pest in Canada. Agric Food Sci. https://api.semanticscholar.org/CorpusID:127718107

ElShahed SM, Mostafa ZK, Radwan MH et al (2023) Modeling the potential global distribution of the Egyptian cotton leafworm, Spodoptera littoralis under climate change. Sci Rep 13:17314. https://doi.org/10.1038/s41598-023-44441-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

EPPO (2024) Anthonomus eugenii. EPPO datasheets on pests recommended for regulation. https://gd.eppo.int

Fernández DC, VanLaerhoven SL, Labbé R (2021) Host utilization by the pepper weevil (Anthonomus eugenii): suitability, preference and offspring performance. Pest Manag Sci 77(10):4719–4729. https://doi.org/10.1002/ps.6514

Article  CAS  PubMed  Google Scholar 

Flessner ML, Burke IC, Dille JA et al (2021) Potential wheat yield loss due to weeds in the United States and Canada. Weed Technol 35(6):1–19. https://doi.org/10.1017/wet.2021.78

Article  Google Scholar 

Gao X, Zhao Q, Wei J et al (2022) Study on the potential distribution of Leptinotarsa decemlineata and its natural enemy Picromerus bidens under climate change. Front Ecol Evol 9:786436. https://doi.org/10.3389/fevo.2021.786436

Article  Google Scholar 

Gentili R, Schaffner U, Martinoli A et al (2021) Invasive alien species and biodiversity: impacts and management. Biodiversity 22(1–2):1–3. https://doi.org/10.1080/14888386.2021.1929484

Article  Google Scholar 

Gong X, Chen Y, Wang T et al (2020) Double-edged effects of climate change on plant invasions: ecological niche modeling global distributions of two invasive alien plants. Sci Total Environ 740:139933. https://doi.org/10.1016/j.scitotenv.2020.139933

Article  CAS  PubMed  Google Scholar 

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

Article  PubMed  Google Scholar 

Gutierrez AP, Oultremont TD, Ellis CK et al (2006) Climatic limits of pink bollworm in Arizona and California: effects of climate warming. Acta Oecologica 30(3):353–364. https://doi.org/10.1016/j.actao.2006.06.003

Article  Google Scholar 

Hao T, Elith J, Guillera-Arroita G et al (2019) A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25(5):839–852. https://doi.org/10.1111/ddi.12892

Article  Google Scholar 

Hill MP, Clusella-Trullas S, Terblanche JS et al (2016) Drivers, impacts, mechanisms and adaptation in insect invasions. Biol Invasions 18(4):883–891. https://doi.org/10.1007/s10530-016-1088-3

Article  Google Scholar 

IPBES (2023) Thematic assessment report on invasive alien species and their control of the intergovernmental science-policy platform on biodiversity and ecosystem services. In: Roy HE, Pauchard A, Stoett P, Renard Truong T (Eds) Bonn, Germany. https://doi.org/10.5281/zenodo.7430692

Laborde JA (1984) Presente y Pasado del Chile en Mexico. In: Campodonico OP (ed). Mexico

Lantschner V, Vega G, Corley J (2018) Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: an overview. Int J Pest Manage 65(3):1–17. https://doi.org/10.1080/09670874.2018.1533664

Article  Google Scholar 

Mineo EC, Gazula A, Joseph SV (2021) Phenology of Anthonomus eugenii Cano in the central coast pepper-production region of California. Southwest Entomol 45(4):863–872. https://doi.org/10.3958/059.045.0403

Article  Google Scholar 

Olson SM, Simonne EH, Stall WM et al (2010) Pepper production in Florida. pp 211–216. https://doi.org/10.32473/edis-tr010-2015

Paap T, Wingfield M, De Beer ZW (2020) Lessons from a major pest invasion: the polyphagous shot hole borer in South Africa. S Afr J Sci 116(11/12):8757. https://doi.org/10.17159/sajs.2020/8757

Article  Google Scholar 

Palma R and Serrano L (1997) Effect of plant extracts on the pepper weevil (Anthonomus eugenii Cano): preliminary results in El Salvador. Agron Mesoam 8:99–107. https://api.semanticscholar.org

Pangga IB, Yap SA, Salvacion AR (2021) Maximum entropy (MaxEnt) modeling of the potential distribution of Aspidiotus rigidus Reyne (Hemiptera: Diaspididae) in the Philippines. Philipp Agric Sci 104:1–7. https://doi.org/10.22446/jpas.2021.104.1.1-7

Patrock RJ, Schuster DJ (1992) Feeding, oviposition and development of the pepper weevil, (Anthonomus eugenii Cano), on selected species of Solanaceae. Trop Pest Manag 38(1):65–69. https://doi.org/10.1080/09670879209371648

Article  Google Scholar 

Paz J, Seco Pon JP, Krüger L (2024) Foraging habitat suitability of black-browed albatrosses Thalassarche melanophris wintering in the South-west Atlantic Ocean: Acknowledging age class to improve conservation management. Aquat Conserv 34(1):e4071. https://doi.org/10.1002/aqc.4071

Article  Google Scholar 

Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213(1):63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

Article  Google Scholar 

Riahi K, Dv V, Kriegler E et al (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ Chang 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

Article  Google Scholar 

Riley DG, Sparks AN (1995) The pepper weevil and its management. https://api.semanticscholar.org/CorpusID:132059590

Seal DR, Martin CG (2017) Laboratory rearing of pepper weevils (Coleoptera: Curculionidae) using artificial leaf balls and a boll weevil diet. J Entomol Sci 52(4):395–410. https://doi.org/10.18474/jes15-43.1

Article  Google Scholar 

Souza PGC, Aidoo OF, Farnezi PKB (2023) Tamarixia radiata global distribution to current and future climate using the climate change experiment (CLIMEX) model. Sci Rep 13(1):1823. https://doi.org/10.1038/s41598-023-29064-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Speranza S, Colonnelli E, Garonna A et al (2014) First record of Anthonomus eugenii (Coleoptera: Curculionidae) in Italy. Fla Entomol 97(2):844–845. https://doi.org/10.1653/024.097.0275

Article  Google Scholar 

Thuiller W (2003) BIOMOD - Optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol 9:1353–1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x

Article  Google Scholar 

Thuiller W, Georges D, Engler R (2014) biomod2: ensemble platform for species distribution modeling. Ecography 32:369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

Article  Google Scholar 

Toapanta M (2001) Population ecology, life history, and biological control of the pepper weevil, Anthonomus eugenii Cano (Coleoptera : Curulionidae). https://www.researchgate.net/publication/34522790

Wang Y, Xie L, Zhou X (2023) Prediction of the potentially suitable areas of Leonurus japonicus in China based on future climate change using the optimized MaxEnt model. Ecol Evol 13(10):e10597. https://doi.org/10.1002/ece3.10597

留言 (0)

沒有登入
gif