Effects of a Habitat Integrity Gradient on the Diversity of Odonates in the Legal Amazonia Zone of the Brazilian State of Maranhão

Acheampong EO, Macgregor CJ, Sloan S, Sayer J (2019) O desmatamento é impulsionado pela expansão agrícola nas reservas florestais de Gana. Africano Científico 5:e00146

Article  Google Scholar 

Arantes CC, Winemiller KO, Petrere M, Castello L, Hess LL, Freitas CE (2018) Relationships between forest cover and fish diversity in the Amazon River floodplain. J Appl Ecol 55(1):386–395. https://doi.org/10.1111/1365-2664.12967

Article  Google Scholar 

Araujo BR, Pinto ÂP, Padial AA (2022) Influence of landscape homogenization due to river damming on dragonfly (Odonata) community structuring in a subtropical forest in the southern Atlantic Forest. Ecohydrology 15(3):e2419. https://doi.org/10.1002/eco.2419

Article  Google Scholar 

Assunção MM, Barreto LN, Addum FM, Feitosa AC, Rodrigues ZMR (2017) Diagnóstico socioambiental de uma população ribeirinha urbana do rio Pindaré, estado do Maranhão. Geografia 2(7):96–114. https://doi.org/10.18764/2446-6549.v2n7p96-114

Article  Google Scholar 

Balzan MV (2012) Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach. J Insect Sci 12:87. https://doi.org/10.1673/031.012.8701

Article  PubMed  PubMed Central  Google Scholar 

Barbosa dos Santos FM, Juen L, Cajaiba RL, Pereira de Sousa JR (2024) Distribution of the Odonata assemblages along an environmental gradient in the streams of the legal Amazonia region in western Maranhão (Brazil). J Insect Conserv. https://doi.org/10.1007/s10841-024-00581-4

Article  Google Scholar 

Batista JD, Ferreira VRS, Cabette HSR, de Castro LA, De Marco P, Juen L (2021) Sampling efficiency of a protocol to measure Odonata diversity in tropical streams. PLoS ONE 16(3):e0248216. https://doi.org/10.1371/journal.pone.0248216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bota-Sierra CA, Sandoval-HJ. Argia oculata. The IUCN Red List of Threatened Species 2021: e.T49254346A49255201. Available at: https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T49254346A49255201.en . Accessed 6 March 2023

Brasil LS, Batista JD, Oliveira-Junior JMB, Dias-Silva K, Giehl NFS, Shimano Y, Juen L (2018) Spatial, biogeographic and environmental predictors of diversity in Amazonian Zygoptera. Neotrop Entomol 47(3):329–337. https://doi.org/10.1007/s13744-017-0549-2

Article  Google Scholar 

Brasil LS, Batista JD, Oliveira-Junior JMB, Dias-Silva K, Giehl NFS, Shimano Y, Juen L (2020) Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environments. Neotrop Entomol 49(2):177–189. https://doi.org/10.1007/s13744-019-00717-6

Article  Google Scholar 

Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x

Article  Google Scholar 

Calvão LB, Siqueira T, Faria APJ, Paiva CK, Juen L (2022) Correlates of Odonata species composition in Amazonian streams depend on dissimilarity coefficient and oviposition strategy. Ecol Entomol 47:998–1010. https://doi.org/10.1111/een.13188

Article  Google Scholar 

Carvalho WD, Mustin K, Farneda FZ et al (2021) Taxonomic, functional and phylogenetic bat diversity decrease from more to less complex natural habitats in the Amazon. Oecologia 197:223–239. https://doi.org/10.1007/s00442-021-05009-3

Article  PubMed  Google Scholar 

Celentano D et al (2018) Desmatamento, degradação e violência no" Mosaico Gurupi"-A região mais ameaçada da Amazônia. Estudos Avançados 32:315–339. https://doi.org/10.5935/0103-4014.20180021

Article  Google Scholar 

Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134. https://doi.org/10.1007/s11356-014-3277-x

Article  CAS  Google Scholar 

Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Comstock Publishers’Association, New York

Google Scholar 

Correia Filho FL, Gomes ER, Nunes OO, Lopes Filho BJ (2011) Projeto cadastro de fontes de abastecimento por água subterrânea: estado do Maranhão: relatório diagnóstico do município de Buriticupu. Teresina: CPRM - Serviço Geológico do Brasil. Available at: https://rigeo.cprm.gov.br/bitstream/doc/15425/1/rel-carolina.pdf. Accessed 17 Sept 2021

Couceiro SR, Dias-Silva K, Hamada N (2021) Influence of climate seasonality on the effectiveness of the use of aquatic macroinvertebrates in urban impact evaluation in central Amazonia. Limnology 22:237–244. https://doi.org/10.1007/s10201-020-00648-6

Article  Google Scholar 

Cunha EJ, de Assis Montag LF, Juen L (2015) Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol Ind 52:422–429. https://doi.org/10.1016/j.ecolind.2014.12.024

Article  Google Scholar 

Dalzochio MS, Périco E, Dametto N, Sahlén G (2020) Rapid functional traits turnover in boreal dragonfly communities (Odonata). Sci Rep 10:15411. https://doi.org/10.1038/s41598-020-71685-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Datto-Liberato FH, Lopez VM, Quinaia T, Valle Junior RF, Samways MJ, Juen L, Valera C, Guillermo-Ferreira R (2024) Total environment sentinels: dragonflies as ambivalent/amphibiotic bioindicators of damage to soil and freshwater. Sci Total Environ 934:173110. https://doi.org/10.1016/j.scitotenv.2024.173110

Article  CAS  PubMed  Google Scholar 

Davies-Colley RJ, Quinn JM (1998) Stream lighting in five regions of North Island, New Zealand: control by channel size and riparian vegetation. NZ J Mar Freshwat Res 32:591–605. https://doi.org/10.1080/00288330.1998.9516847

Article  Google Scholar 

De Paula FR, Leal CG, Leitao RP, Ferraz SFDB, Pompeu PS, Zuanon JAS, Hughes RM (2021) The role of secondary riparian forests for conserving fish assemblages in eastern Amazon streams. Hydrobiologia 1–18. https://doi.org/10.1007/s10750-020-04507-4

Deacon C, Samways MJ (2021) A review of the impacts and opportunities for African urban dragonflies. Insects 12:190. https://doi.org/10.3390/insects12030190

Article  PubMed  PubMed Central  Google Scholar 

Dolný A, Ožana S, Burda M, Harabiš F (2021) Effects of landscape patterns and their changes to species richness, species composition, and the conservation value of Odonates (Insecta). Insects 12:478. https://doi.org/10.3390/insects12060478

Article  PubMed  PubMed Central  Google Scholar 

Ellwanger JH, Kulmann-Leal B, Chies JAB et al (2020) Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Ciênc 92:1–33. https://doi.org/10.1590/0001-3765202020191375

Article  CAS  Google Scholar 

Ferreira A, Kiauta B, Zaha A (1979) Male germ cell chromosomes of thirty-two Brazilian dragonflies. Odonatologica 8:5–22

Google Scholar 

Ferreira VRS et al (2023) Amazonian Odonata Trait Bank. Ecol Evol 13:e10149. https://doi.org/10.1002/ece3.10149

Article  PubMed  PubMed Central  Google Scholar 

Flores BM et al (2024) Critical transitions in the Amazon forest system. Nature 626(7999):555–564. https://doi.org/10.1038/s41586-023-06970-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garrison RW, Von Ellenrieder N (2015) Damselflies of the genus Argia of the Guiana Shield (Odonata: Coenagrionidae). Zootaxa 4042:001–134

Article  Google Scholar 

Garrison RW, von Ellenrieder N, Louton JA (2006) Dragonfly genera of the New World: an illustrated and annotated key to the Anisoptera. JHU Press, Baltimore

Book  Google Scholar 

Gomes MAF, Pereira LC, Silva AKL, Pereira AS, Tôsto SG, de Sousa Junior PM (2022) Aspectos qualitativos da água do Rio Pindaré na Amazônia Maranhense. Terceira Margem Amazônia 8(19):253–269. https://doi.org/10.36882/2525-4812.2022v8i19.p253-269

Article  Google Scholar 

Grabow K, Rüppell G (1995) Wing loading in relation to size and flight characteristics of European Odonata. Odonatologica 24:175–186

Google Scholar 

Hendry AP, Taylor EB (2004) How much of the variation in adaptive divergence can be explained by gene flow? An evaluation using lake-stream stickleback pairs. Evolution 58:2319–2331. https://doi.org/10.1111/j.0014-3820.2004.tb01606.x

Article  PubMed  Google Scholar 

Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400

Article  Google Scholar 

INMET – Instituto Nacional de Meteorologia. Dados climáticos da Estação Buriticupu TRMM.8507, 2022. Extracted from www.inmet.gov.br/. Accessed 23 July 2022

IUCN. 2023. The IUCN Red List of Threatened Species. Version 2023–1. https://www.iucnredlist.org. Accessed 17 February 2023

Jézéquel C et al (2020) Freshwater fish diversity hotspots for conservation priorities in the Amazon Basin. Conserv Biol 34:956–965. https://doi.org/10.1111/cobi.13466

Article  PubMed  Google Scholar 

Juen L, De Marco JP (2011) Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv Divers 4:265–274. https://doi.org/10.1111/j.1752-4598.2010.00130.x

Article 

留言 (0)

沒有登入
gif