Bao H, Gao H, Zhang Y, Fan D, Fang J, Liu Z (2016) The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: expression levels and detoxification efficiency. Pestic Biochem Physiol 129:70–74
Article PubMed CAS Google Scholar
Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:149–153
Broackes-Carter FC, Nathalie M, Deborah G, Stephen H, John B, Ann H (2002) Temporal regulation of CFTR expression during ovine lung development: implications for cf gene therapy. Hum Mol Genet 2:125
Buckingham S, Lapied B, Corronc H, Sattelle F (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2692
Article PubMed CAS Google Scholar
Chen XD, Ebert TA, Pelz-Stelinski KS, Stelinski LL (2020) Fitness costs associated with thiamethoxam and imidacloprid resistance in three field populations of Diaphorina citri (Hemiptera: Liviidae) from Florida. Bull Entomol Res 110:512–520
Article PubMed CAS Google Scholar
Cheng S, Li R, Chen Z, Ni J, Lv N, Liang P, guo TF, Liang P, Gao X (2023) Comparative susceptibility of Aphis gossypii Glover (Hemiptera: Aphididae) on cotton crops to imidacloprid and a novel insecticide cyproflanilide in China. Ind Crops Prod 192:116053
Cui L, Sun L, Yang D, Yan X, Yuan H (2012) Effects of cycloxaprid, a novel cis–nitromethylene neonicotinoid insecticide, on the feeding behaviour of Sitobion avenae. Pest Manag Sci 68:1484–1491
Article PubMed CAS Google Scholar
Ding Z, Wen Y, Yang B, Zhang Y, Liu S, Liu Z, Han Z (2013) Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1. Insect Biochem Mol Biol 43(11):1021–1027
Article PubMed CAS Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1
Article PubMed PubMed Central Google Scholar
Fusetto R, Denecke S, Perry T, O’Hair RA, Batterham P (2017) Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster. Sci Rep 7(1):11339
Article PubMed PubMed Central Google Scholar
George KS, Gair R (2010) Crop loss assessment on winter wheat attacked by the grain aphid, Sitobion avenae (F.). Plant Pathol 28:143–149
Gong YH, Yu XR, Shang QL, Shi XY, Gao XW (2014) Oral delivery mediated RNA interference of a carboxylesterase gene results in reduced resistance to organophosphorus insecticides in the cotton aphid. Aphis Gossypii Glover Plos One 9:e102823
Hong S, Guo Q, Wang W, Hu S, Fang F, Lv Y, Yu J, Zou F, Lei Z, Ma K, Ma L, Zhou D, Sun Y, Zhang D, Shen B, Zhu C (2014) Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance. Insect Biochem Mol Biol 55:39–50
Article PubMed PubMed Central CAS Google Scholar
Hu GL, Lu LY, Li YS, Su X, Dong WY, Zhang BZ, Liu RQ, Shi MW, Wang HL, Chen XL (2022) CYP4CJ6-mediated resistance to two neonicotinoid insecticides in Sitobion miscanthi (Takahashi). Bull Entomol Res 112(5):646–655
Article PubMed CAS Google Scholar
Jiang X, Zhang Q, Qin Y, Yin H, Zhang S, Li Q, Zhang Y, Fan J, Chen J (2019) A chromosome-level draft genome of the grain aphid Sitobion miscanthi. Gigascience 8(8):giz101
Article PubMed PubMed Central Google Scholar
Jiang YT, Kong FB, Zhang P, Zhang MY, Su X, Zhang BZ, Ji X, Wang HL (2023) MicroRNA-23a changes chlorantraniliprole susceptibility by targeting CYP9F1 in Spodoptera frugiperda. Entomologia Generalis 43(5):1041–1049
Jones CM, Daniels M, Andrews M, Slater R, Lind RJ, Gorman K, Denholm I (2011) Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci. Pestic Biochem Physiol 101:53–58
Karamipour N, Fathipour Y, Talebi AA, Asgari S, Mehrabadi M (2019) The microRNA pathway is involved in Spodoptera frugiperda (Sf9) cells antiviral immunedefense against Autographa californica multiple nucleopolyhedrovirus infection. Insect Biochem Mol Biol 112:103202
Article PubMed CAS Google Scholar
Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Morin S (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochem Mol Biol 38:634–644
Article PubMed CAS Google Scholar
Kavi LA, Kaufman PE, Scott JG (2014) Genetics and mechanisms of imidacloprid resistance in house flies. Pestic Biochem Physiol 109:64–69
Article PubMed CAS Google Scholar
Kim JI, Kwon M, Ki GH, Kim SY, Lee SH (2015) Two mutations in nAChR beta subunit is associated with imidacloprid resistance in the Aphis gossypii. J Asia-Pacific Entomol 18:291–296
Kundoo AA, Dar SA, Mushtaq M, Bashir Z, Dar MS, Gul S, Ali MT, Gulzar S (2018) Role of neonicotinoids in insect pest management: a review. J Entomol Zool Stud 6(1):333–339
Lei Z, Lv Y, Wang W, Guo Q, Zou F, Hu S, Fang F, Tian M, Liu B, Liu X, Ma K, Ma L, Zhou D, Zhang D, Sun Y, Shen B, Zhu C (2015) MiR-278-3p regulates pyrethroid resistance in Culex pipiens pallens. Parasitol Res 114:699–706
Li XC, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253
Liu ZW, Han ZJ, Wang Y, Zhang L, Zhang H, Liu C (2003) Selection for imidacloprid resistance in Nilaparvata lugens: cross–resistance patterns and possible mechanisms. Pest Manag Sci 59:770–775
Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci 102(24):8420–8425
Article PubMed PubMed Central CAS Google Scholar
Liu N, Li M, Gong Y, Liu F, Li T (2015) Cytochrome P450s-their expression, regulation, and role in insecticide resistance. Pestic Biochem Physiol 120:77–81
Article PubMed CAS Google Scholar
Liu S, Fu B, Zhang C, He C, Gong P, Huang M, Du T, Liang J, Wei X, Yang J, Yin C, Ji Y, Xue H, Hu J, Wang C, Zhang R, Du H, Yang X, Zhang Y (2023) 20E biosynthesis gene CYP306A1 confers resistance to imidacloprid in the nymph stage of Bemisia tabaci by detoxification metabolism. Pest Manag Sci 79(10):3883–3892
Article PubMed CAS Google Scholar
Lu Y, Gao X (2009) Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull Entomol Res 99:611–617
Article PubMed CAS Google Scholar
Lu LY, Li YS, Hu GL, Su X, Dong WY, Zhang BZ, Gao XW (2021) Promoters of the two novel cytochrome P450 genes, CYP6DD1 and CYP307A2 from Sitobion miscanthi and their mediation under insecticide exposure. Crop Prot 147:105687
Luo K, Zhao H, Wang X, Kang Z (2022) Prevalent pest management strategies for grain aphids: opportunities and challenges. Front Plant Sci 12:790919
Article PubMed PubMed Central Google Scholar
Ma K, Li F, Tang Q, Liang P, Liu Y, Zhang B, Gao X (2019a) CYP4CJ1-mediated gossypol and tannic acid tolerance in Aphis gossypii glover. Chemosphere 219:961–970
Article PubMed CAS Google Scholar
Ma K, Tang Q, Zhang B, Liang P, Wang B, Gao X (2019b) Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover. Pestic Biochem Physiol 157:204–210
Article PubMed CAS Google Scholar
Mezei I, Bielza P, Siebert MW, Torne M, Gomez LE, Valverde-Garcia P, Belando A, Moreno I, Grávalos C, Cifuentes D, Sparks TC (2020) Sulfoxaflor efficacy in the laboratory against imidacloprid-resistant and susceptible populations of the green peach aphid, Myzus persicae: Impact of the R81T mutation in the nicotinic acetylcholine receptor. Pestic Biochem Physiol 166:104582
留言 (0)