Single-molecule analysis of transcription activation: dynamics of SAGA coactivator recruitment

Hahn, S. & Young, E. T. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189, 705–736 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cairns, B. R. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193–198 (2009).

Article  CAS  PubMed  Google Scholar 

Li, B., Carey, M., & Workman, J. L.The role of chromatin during transcription. Cell 128, 707–719 (2007).

Article  CAS  PubMed  Google Scholar 

Patel, A. B., Greber, B. J. & Nogales, E. Recent insights into the structure of TFIID, its assembly, and its binding to core promoter. Curr. Opin. Struct. Biol. 61, 17–24 (2020).

Article  CAS  PubMed  Google Scholar 

Malik, S. & Roeder, R. G. Mediator: a drawbridge across the enhancer–promoter divide. Mol. Cell 64, 433–434 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karr, J. P., Ferrie, J. J., Tjian, R. & Darzacq, X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication. Genes Dev. 36, 7–16 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

Article  CAS  PubMed  Google Scholar 

Ptashne, M. Regulation of transcription: from lambda to eukaryotes. Trends Biochem. Sci. 30, 275–279 (2005).

Article  CAS  PubMed  Google Scholar 

Zhang, H. et al. Mediator structure and conformation change. Mol. Cell 81, 1781–1788 (2021).

Article  CAS  PubMed  Google Scholar 

Mittal, C., Culbertson, S. J. & Shogren-Knaak, M. A. Distinct requirements of linker DNA and transcriptional activators in promoting SAGA-mediated nucleosome acetylation. J. Biol. Chem. 293, 13736–13749 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soffers, J. H. M. & Workman, J. L. The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. Genes Dev. 34, 1287–1303 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huisinga, K. L. & Pugh, B. F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573–585 (2004).

Article  CAS  PubMed  Google Scholar 

Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640–1650 (1997).

Article  CAS  PubMed  Google Scholar 

Baptista, T. et al. SAGA is a general cofactor for RNA polymerase II transcription. Mol. Cell 68, 130–143 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mittal, C., Lang, O., Lai, W. K. M. & Pugh, B. F. An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes Dev. 36, 985–1001 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Utley, R. T. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498–502 (1998).

Article  CAS  PubMed  Google Scholar 

Vignali, M., Steger, D. J., Neely, K. E., & Workman, J. L.Distribution of acetylated histones resulting from Gal4–VP16 recruitment of SAGA and NuA4 complexes. EMBO J. 19, 2629–2640 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, X. F. et al. Mediator and SAGA have distinct roles in Pol II preinitiation complex assembly and function. Cell Rep. 2, 1061–1067 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sikorski, T. W. et al. Proteomic analysis demonstrates activator- and chromatin-specific recruitment to promoters. J. Biol. Chem. 287, 35397–35408 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo, M. H., vom Baur, E., Struhl, K. & Allis, C. D. Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol. Cell 6, 1309–1320 (2000).

Article  CAS  PubMed  Google Scholar 

Bhaumik, S. R. & Green, M. R. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 15, 1935–1945 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larschan, E. & Winston, F. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15, 1946–1956 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Govind, C. K., Zhang, F., Qiu, H., Hofmeyer, K. & Hinnebusch, A. G. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol. Cell 25, 31–42 (2007).

Article  CAS  PubMed  Google Scholar 

Friedman, L. J., Chung, J. & Gelles, J. Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys. J. 91, 1023–1031 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedman, L. J. & Gelles, J. Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86, 27–36 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

Article  CAS  PubMed  Google Scholar 

Keppler, A. et al. Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32, 437–444 (2004).

Article  CAS  PubMed  Google Scholar 

Baek, I. et al. A set of Saccharomyces cerevisiae integration vectors for fluorescent dye labeling of proteins. G3 (Bethesda) 12, jkac201 (2022).

Article  CAS  PubMed  Google Scholar 

Baek, I., Friedman, L. J., Gelles, J. & Buratowski, S. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Mol. Cell 81, 3576–3588 (2021).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif