Brody, E. & Abelson, J. The ‘spliceosome’: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228, 963–967 (1985).
Article CAS PubMed Google Scholar
Frendewey, D. & Keller, W. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42, 355–367 (1985).
Article CAS PubMed Google Scholar
Grabowski, P. J., Seiler, S. R. & Sharp, P. A. A multicomponent complex is involved in the splicing of messenger RNA precursors. Cell 42, 345–353 (1985).
Article CAS PubMed Google Scholar
Will, C. L. & Luhrmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011).
Article CAS PubMed PubMed Central Google Scholar
Shi, Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 18, 655–670 (2017).
Article CAS PubMed Google Scholar
Wilkinson, M. E., Charenton, C. & Nagai, K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 89, 359–388 (2020).
Article CAS PubMed Google Scholar
Cordin, O. & Beggs, J. D. RNA helicases in splicing. RNA Biol. 10, 83–95 (2013).
Article CAS PubMed PubMed Central Google Scholar
Cordin, O., Hahn, D. & Beggs, J. D. Structure, function and regulation of spliceosomal RNA helicases. Curr. Opin. Cell Biol. 24, 431–438 (2012).
Article CAS PubMed Google Scholar
Xu, Y. Z. & Query, C. C. Competition between the ATPase Prp5 and branch region–U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol. Cell 28, 838–849 (2007).
Article CAS PubMed PubMed Central Google Scholar
Chen, H. C., Tseng, C. K., Tsai, R. T., Chung, C. S. & Cheng, S. C. Link of NTR-mediated spliceosome disassembly with DEAH-box ATPases Prp2, Prp16, and Prp22. Mol. Cell. Biol. 33, 514–525 (2013).
Article CAS PubMed PubMed Central Google Scholar
Wlodaver, A. M. & Staley, J. P. The DExD/H-box ATPase Prp2p destabilizes and proofreads the catalytic RNA core of the spliceosome. RNA 20, 282–294 (2014).
Article CAS PubMed PubMed Central Google Scholar
Burgess, S. M. & Guthrie, C. A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell 73, 1377–1391 (1993).
Article CAS PubMed Google Scholar
Koodathingal, P., Novak, T., Piccirilli, J. A. & Staley, J. P. The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing. Mol. Cell 39, 385–395 (2010).
Article CAS PubMed PubMed Central Google Scholar
Mayas, R. M., Maita, H. & Staley, J. P. Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat. Struct. Mol. Biol. 13, 482–490 (2006).
Article CAS PubMed PubMed Central Google Scholar
Egecioglu, D. E. & Chanfreau, G. Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control. RNA 17, 383–389 (2011).
Article CAS PubMed PubMed Central Google Scholar
Fourmann, J. B. et al. Dissection of the factor requirements for spliceosome disassembly and the elucidation of its dissociation products using a purified splicing system. Genes Dev. 27, 413–428 (2013).
Article CAS PubMed PubMed Central Google Scholar
Tsai, R. T. et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev. 19, 2991–3003 (2005).
Article CAS PubMed PubMed Central Google Scholar
Martin, A., Schneider, S. & Schwer, B. Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome. J. Biol. Chem. 277, 17743–17750 (2002).
Article CAS PubMed Google Scholar
Arenas, J. E. & Abelson, J. N. Prp43: an RNA helicase-like factor involved in spliceosome disassembly. Proc. Natl Acad. Sci. USA 94, 11798–11802 (1997).
Article CAS PubMed PubMed Central Google Scholar
Boon, K. L. et al. Yeast Ntr1/Spp382 mediates Prp43 function in postspliceosomes. Mol. Cell. Biol. 26, 6016–6023 (2006).
Article CAS PubMed PubMed Central Google Scholar
Warkocki, Z. et al. The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome. Genes Dev. 29, 94–107 (2015).
Article PubMed PubMed Central Google Scholar
Roy, J., Kim, K., Maddock, J. R., Anthony, J. G. & Woolford, J. L. Jr. The final stages of spliceosome maturation require Spp2p that can interact with the DEAH box protein Prp2p and promote step 1 of splicing. RNA 1, 375–390 (1995).
CAS PubMed PubMed Central Google Scholar
Aravind, L. & Koonin, E. V. G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. Trends Biochem. Sci. 24, 342–344 (1999).
Article CAS PubMed Google Scholar
Bohnsack, K. E., Ficner, R., Bohnsack, M. T. & Jonas, S. Regulation of DEAH-box RNA helicases by G-patch proteins. Biol. Chem. 402, 561–579 (2021).
Article CAS PubMed Google Scholar
Lardelli, R. M., Thompson, J. X., Yates, J. R. 3rd & Stevens, S. W. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 16, 516–528 (2010).
Article PubMed PubMed Central Google Scholar
Bao, P., Hobartner, C., Hartmuth, K. & Luhrmann, R. Yeast Prp2 liberates the 5′ splice site and the branch site adenosine for catalysis of pre-mRNA splicing. RNA 23, 1770–1779 (2017).
Article CAS PubMed PubMed Central Google Scholar
Ohrt, T. et al. Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. RNA 18, 1244–1256 (2012).
Article CAS PubMed PubMed Central Google Scholar
Fourmann, J. B. et al. The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP–intron interaction. eLife 5, e15564 (2016).
Article PubMed PubMed Central Google Scholar
Pandit, S., Lynn, B. & Rymond, B. C. Inhibition of a spliceosome turnover pathway suppresses splicing defects. Proc. Natl Acad. Sci. USA 103, 13700–13705 (2006).
Article CAS PubMed PubMed Central Google Scholar
Koodathingal, P. & Staley, J. P. Splicing fidelity: DEAD/H-box ATPases as molecular clocks. RNA Biol. 10, 1073–1079 (2013).
留言 (0)