Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M et al (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2
Abhyankar LN, Jones MR, Guallar E, Navas-Acien A (2012) Arsenic exposure and hypertension: a systematic review. Environ Health Perspect 120:494–500. https://doi.org/10.1289/ehp.1103988
Article PubMed CAS Google Scholar
Afridi HI, Kazi TG, Talpur FN, Kazi A, Arain SS, Arain SA et al (2014) Interaction between essential elements selenium and zinc with cadmium and mercury in samples from hypertensive patients. Biol Trace Elem Res 160(2):185–196. https://doi.org/10.1007/s12011-014-0048-y
Article PubMed CAS Google Scholar
Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JBT, Michalke B, Skalnaya MG et al (2020) Sulfhydryl groups as targets of mercury toxicity. Coord Chem Rev 417. https://doi.org/10.1016/J.CCR.2020.213343
Ali S, Awan Z, Mumtaz S, Hafiz &, Shakir A, Ahmad F et al (2020) Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-020-09011-9/Published
Ally A, Buist R, Mills P, Reuhl K (1993) Effects of methylmercury and trimethyltin on cardiac, platelet, and aorta eicosanoid biosynthesis and platelet serotonin release. Pharmacol Biochem Behav 44:555–563. https://doi.org/10.1016/0091-3057(93)90166-Q
Article PubMed CAS Google Scholar
Andreoli V, Sprovieri F (2017) Genetic aspects of susceptibility to mercury toxicity: an overview. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14010093
Arbi S, Bester MJ, Pretorius L, Oberholzer HM (2021) Adverse cardiovascular effects of exposure to cadmium and mercury alone and in combination on the cardiac tissue and aorta of Sprague–Dawley rats. J Environ Sci Health A Tox Hazard Subst Environ Eng 56:609–624. https://doi.org/10.1080/10934529.2021.1899534
Arbi S, Oberholzer HM, Van Rooy MJ, Venter C, Bester MJ (2017) Effects of chronic exposure to mercury and cadmium alone and in combination on the coagulation system of Sprague-Dawley rats. Ultrastruct Pathol 41:275–283. https://doi.org/10.1080/01913123.2017.1327909
ATSDR (2022) Toxicological profile for mercury (Draft for Public Comment). U.S. Department of Health and Human Services, Public Health Services, Atlanta, GA
Aubrac G, Bastiansz A, Basu N (2022) Systematic review and meta-analysis of mercury exposure among populations and environments in contact with electronic waste. Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph191911843
Baiyun R, Li S, Liu B, Lu J, Lv Y, Xu J et al (2018) Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. Ecotoxicol Environ Saf 161:655–661. https://doi.org/10.1016/J.ECOENV.2018.06.046
Article PubMed CAS Google Scholar
Ballatori N, Clarkson TW (1982) Developmental changes in the biliary excretion of methylmercury and glutathione. Science (1979) 216:61–63. https://doi.org/10.1126/science.7063871
Barone G, Storelli A, Meleleo D, Dambrosio A, Garofalo R, Busco A et al (2021) Levels of mercury, methylmercury and selenium in fish: insights into children food safety. Toxics 9:1–14. https://doi.org/10.3390/toxics9020039
Bartolome J, Whitmore WL, Slotkin TA (1984) Effects of neonatal mercuric chloride administration on growth and biochemical development of neuronal and non-neuronal tissues in the rat: comparison with methylmercury. Toxicol Lett 22:101–111. https://doi.org/10.1016/0378-4274(84)90052-3
Article PubMed CAS Google Scholar
Bastiansz A, Ewald J, Saldaña VR, Santa-Rios A, Basu N (2022) A systematic review of mercury exposures from skin-lightening products. Environ Health Perspect 130. https://doi.org/10.1289/EHP10808
Basu N, Bastiansz A, Dórea JG, Fujimura M, Horvat M, Shroff E et al (2023) Our evolved understanding of the human health risks of mercury. Ambio 52:877–896. https://doi.org/10.1007/s13280-023-01831-6
Article PubMed PubMed Central CAS Google Scholar
Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J (2018) A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ Health Perspect 126. https://doi.org/10.1289/EHP3904
Bautista LE, Stein JH, Morgan BJ, Stanton N, Young T, Nieto FJ (2009) Association of blood and hair mercury with blood pressure and vascular reactivity. WMJ 108:250–252. https://doi.org/10.1038/nbt.3121.ChIP-nexus
Article PubMed PubMed Central Google Scholar
Bello KAS, Wilke MCB, Simões RP, Landim-Vieira M, Langa P, Stefanon I et al (2023) Chronic exposure to mercury increases arrhythmia and mortality post-acute myocardial infarction in rats. Front Physiol 14. https://doi.org/10.3389/FPHYS.2023.1260509
Bulka CM, Persky VW, Daviglus ML, Durazo-Arvizu RA, Argos M (2019) Multiple metal exposures and metabolic syndrome: a cross-sectional analysis of the National Health and Nutrition Examination Survey 2011–2014. Environ Res 168:397–405. https://doi.org/10.1016/j.envres.2018.10.022
Article PubMed CAS Google Scholar
Carmignani M, Boscolo P, Artese L, Del Rosso G, Porcelli G, Felaco M et al (1992) Renal mechanisms in the cardiovascular effects of chronic exposure to inorganic mercury in rats. Br J Ind Med 49:226–232. https://doi.org/10.1136/OEM.49.4.226
Article PubMed PubMed Central CAS Google Scholar
Carmignani M, Finelli VN, Boscolo P (1983) Mechanisms in cardiovascular regulation following chronic exposure of male rats to inorganic mercury. Toxicol Appl Pharmacol 69:442–450. https://doi.org/10.1016/0041-008X(83)90267-3
Article PubMed CAS Google Scholar
Carneiro MFH, Oliveira Souza JM, Grotto D, Batista BL, de Oliveira Souza VC, Barbosa F (2014) A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury). Environ Res 134:218–227. https://doi.org/10.1016/J.ENVRES.2014.07.009
Article PubMed CAS Google Scholar
Carretero OA, Oparil S (2000) Essential hypertension. Part I: definition and etiology. Circulation 101:329–335. https://doi.org/10.1161/01.CIR.101.3.329
Carrier G, Bouchard M, Brunet RC, Caza M (2001) A toxicokinetic model for predicting the tissue distribution and elimination of organic and inorganic mercury following exposure to methyl mercury in animals and humans. II. Application and validation of the model in humans. Toxicol Appl Pharmacol 171:50–60. https://doi.org/10.1006/taap.2000.9113
Cho YM (2017) Fish consumption, mercury exposure, and the risk of cholesterol profiles: findings from the Korea National Health and Nutrition Examination Survey 2010–2011. Environ Health Toxicol 32:e2017014. https://doi.org/10.5620/eht.e2017014
Choi AL, Weihe P, Budtz-Jorgensen E, Jorgensen PJ, Salonen JT, Tuomainen T-PP et al (2009) Methylmercury exposure and adverse cardiovascular effects in Faroese Whaling men. Environ Health Perspect 117:367–372. https://doi.org/10.1289/ehp.11608
Article PubMed CAS Google Scholar
Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662. https://doi.org/10.1080/10408440600845619
Article PubMed CAS Google Scholar
Cordeiro ER, Filetti FM, Simões MR, Vassallo DV. 2019. Mercury induces nuclear estrogen receptors to act as vasoconstrictors promoting endothelial denudation via the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 381:114710; https://doi.org/10.1016/J.TAAP.2019.114710.
Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230. https://doi.org/10.1016/j.taap.2003.11.032
Article PubMed CAS Google Scholar
Da Cunha V, Souza HP, Rossoni LV, França AS, Vassallo DV (2000) Effects of mercury on the isolated perfused rat tail vascular bed are endothelium-dependent. Arch Environ Contam Toxicol 39:124–130. https://doi.org/10.1007/S002440010001/METRICS
Daneshmand R, Kurl S, Tuomainen T-P, Virtanen JK (2016) Associations of serum n-3 and n-6 PUFA and hair mercury with the risk of incident stroke in men: the Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD). Br J Nutr 115:1851–1859. https://doi.org/10.1017/S0007114516000982
Article PubMed CAS Google Scholar
Dantas ADO, De CTDSDS, Câmara VDM, Santos ADSE, Asmus CIRF, Vianna ADS (2022) Maternal mercury exposure and hypertensive disorders of pregnancy: a systematic review. Rev Bras De Ginecol Obstet 44:1126–1133. https://doi.org/10.1055/s-0042-1760215
Davidson PW, Myers GJ, Weiss B (2004) Mercury exposure and child development outcomes. Pediatrics 113:1023–1029
Desai G, Niu Z, Luo W, Frndak S, Shaver AL, Kordas K (2021) Low-level exposure to lead, mercury, arsenic, and cadmium, and blood pressure among 8–17-year-old participants of the 2009–2016 National Health and Nutrition Examination Survey. Environ Res 197. https://doi.org/10.1016/j.envres.2021.111086
Downer MK, Martínez-González MA, Gea A, Stampfer M, Warnberg J, Ruiz-Canela M et al (2017) Mercury exposure and risk of cardiovascular disease: a nested case-control study in the PREDIMED (PREvention with MEDiterranean Diet) study. BMC Cardiovasc Disord 17:9. https://doi.org/10.1186/s12872-016-0435-8
Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983. https://doi.org/10.1021/es305071v
Article PubMed PubMed Central CAS Google Scholar
EFSA Panel on Nutrition NF and FA (NDA), Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch-Ernst K-I et al (2023) Scientific opinion on the tolerable upper intake level for selenium. EFSA J 21:e07704. https://doi.org/10.2903/j.efsa.2023.7704
Eom S-Y, Choi S-H, Ahn S-J, Kim D-WD-K, Kim D-WD-K, Lim J-A et al (2014) Reference levels of blood mercury and association with metabolic syndrome in Korean adults. Int Arch Occup Environ Health 87:501–513. https://doi.org/10.1007/s00420-013-0891-8
Article PubMed CAS Google Scholar
Esdaile LJ, Chalker JM (2018) The mercury problem in artisanal and small-scale gold mining. Chem A Eur J 24:6905–6916. https://doi.org/10.1002/chem.201704840
Eum KD, Lee MS, Paek D (2008) Cadmium in blood and hypertension. Sci Total Environ 407:147–153. https://doi.org/10.1016/j.scitotenv.2008.08.037
留言 (0)