Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).
Article CAS PubMed Google Scholar
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).
Article PubMed PubMed Central Google Scholar
Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).
Article CAS PubMed Google Scholar
Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).
Article CAS PubMed PubMed Central Google Scholar
Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013).
Article CAS PubMed PubMed Central Google Scholar
Quintero-Cadena, P., Lenstra, T. L. & Sternberg, P. W. RNA Pol II length and disorder enable cooperative scaling of transcriptional bursting. Mol. Cell 79, 207–220.e8 (2020).
Article CAS PubMed Google Scholar
Gibbs, E. B. et al. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat. Commun. 8, 15233 (2017).
Article CAS PubMed PubMed Central Google Scholar
Portz, B. et al. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat. Commun. 8, 15231 (2017).
Article CAS PubMed PubMed Central Google Scholar
Venkat Ramani, M. K., Yang, W., Irani, S. & Zhang, Y. Simplicity is the ultimate sophistication-crosstalk of post-translational modifications on the RNA polymerase II. J. Mol. Biol. 433, 166912 (2021).
Article CAS PubMed Google Scholar
Cermakova, K. et al. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 374, 1113–1121 (2021).
Article CAS PubMed PubMed Central Google Scholar
Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014).
Sharma, S. et al. Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc. Natl Acad. Sci. USA 115, E7053–E7062 (2018).
Article CAS PubMed PubMed Central Google Scholar
Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345 e28 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).
Article CAS PubMed PubMed Central Google Scholar
Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).
Article CAS PubMed PubMed Central Google Scholar
Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).
Article CAS PubMed Google Scholar
Keogh, M. C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605 (2005).
Article CAS PubMed Google Scholar
Joshi, A. A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971–978 (2005).
Article CAS PubMed Google Scholar
Wiren, M. et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 24, 2906–2918 (2005).
Article CAS PubMed PubMed Central Google Scholar
Jelinic, P., Pellegrino, J. & David, G. A novel mammalian complex containing Sin3B mitigates histone acetylation and RNA polymerase II progression within transcribed loci. Mol. Cell. Biol. 31, 54–62 (2011).
Article CAS PubMed Google Scholar
Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).
Article CAS PubMed Google Scholar
Govind, C. K. et al. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol. Cell 39, 234–246 (2010).
Article CAS PubMed PubMed Central Google Scholar
Li, B. et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050–1054 (2007).
Article CAS PubMed Google Scholar
Guan, H. et al. Diverse modes of H3K36me3-guided nucleosomal deacetylation by Rpd3S. Nature 620, 669–675 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y. et al. Structural basis for nucleosome binding and catalysis by the yeast Rpd3S/HDAC holoenzyme. Cell Res. 33, 971–974 (2023).
Article CAS PubMed PubMed Central Google Scholar
Li, W., Cui, H., Lu, Z. & Wang, H. Structure of histone deacetylase complex Rpd3S bound to nucleosome. Nat. Struct. Mol. Biol. 30, 1893–1901 (2023).
Article CAS PubMed Google Scholar
Markert, J. W., Vos, S. M. & Farnung, L. Structure of the complete Saccharomyces cerevisiae Rpd3S-nucleosome complex. Nat. Commun. 14, 8128 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chu, Y., Sutton, A., Sternglanz, R. & Prelich, G. The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Mol. Cell. Biol. 26, 3029–3038 (2006).
Article CAS PubMed PubMed Central Google Scholar
Lee, K. Y., Ranger, M. & Meneghini, M. D. Combinatorial genetic control of Rpd3S through histone H3K4 and H3K36 methylation in budding yeast. G3 (Bethesda) 8, 3411–3420 (2018).
留言 (0)