Trunz, B. B., Fine, P. & Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367, 1173–1180 (2006).
Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dijkman, K. et al. Disparate tuberculosis disease development in macaque species is associated with innate immunity. Front. Immunol. 10, 2479 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yamazaki-Nakashimada, M. A., Unzueta, A., Berenise Gamez-Gonzalez, L., Gonzalez-Saldana, N. & Sorensen, R. U. BCG: a vaccine with multiple faces. Hum. Vaccin. Immunother. 16, 1841–1850 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hesseling, A. C. et al. The risk of disseminated Bacille Calmette-Guerin (BCG) disease in HIV-infected children. Vaccine 25, 14–18 (2007).
Jouanguy, E. et al. Interferon-ɣ–receptor deficiency in an infant with fatal Bacille Calmette–Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).
Article CAS PubMed Google Scholar
Conti, F. et al. Mycobacterial disease in patients with chronic granulomatous disease: a retrospective analysis of 71 cases. J. Allergy Clin. Immunol. 138, 241–248.e3 (2016).
Alexandroff, A. B., Jackson, A. M., O’Donnell, M. A. & James, K. BCG immunotherapy of bladder cancer: 20 years on. Lancet 353, 1689–1694 (1999).
Article CAS PubMed Google Scholar
Gonzalez, O. Y. et al. Spectrum of Bacille Calmette–Guerin (BCG) infection after intravesical BCG immunotherapy. Clin. Infect. Dis. 36, 140–148 (2003).
Kawai, K., Miyazaki, J., Joraku, A., Nishiyama, H. & Akaza, H. Bacillus Calmette–Guerin (BCG) immunotherapy for bladder cancer: current understanding and perspectives on engineered BCG vaccine. Cancer Sci. 104, 22–27 (2013).
Article CAS PubMed PubMed Central Google Scholar
Liu, Y., Lu, J., Huang, Y. & Ma, L. Clinical spectrum of complications induced by intravesical immunotherapy of Bacillus Calmette–Guerin for bladder cancer. J. Oncol. 2019, 6230409 (2019).
Article PubMed PubMed Central Google Scholar
Ehrt, S. et al. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res. 33, e21 (2005).
Article PubMed PubMed Central Google Scholar
Kim, J. H. et al. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc. Natl Acad. Sci. USA 110, 19095–19100 (2013).
Article CAS PubMed PubMed Central Google Scholar
Klotzsche, M., Ehrt, S. & Schnappinger, D. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res. 37, 1778–1788 (2009).
Article CAS PubMed PubMed Central Google Scholar
Catalao, M. J. & Pimentel, M. Mycobacteriophage lysis enzymes: targeting the mycobacterial cell envelope. Viruses 10, 428 (2018).
Article PubMed PubMed Central Google Scholar
Ford, M. E., Sarkis, G. J., Belanger, A. E., Hendrix, R. W. & Hatfull, G. F. Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279, 143–164 (1998).
Article CAS PubMed Google Scholar
Boldrin, F. et al. Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res. 38, e134 (2010).
Article PubMed PubMed Central Google Scholar
Krueger, C., Berens, C., Schmidt, A., Schnappinger, D. & Hillen, W. Single-chain Tet transregulators. Nucleic Acids Res. 31, 3050–3056 (2003).
Article CAS PubMed PubMed Central Google Scholar
Du Bruyn, E. et al. Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunol. 14, 491–499 (2021).
Sallin, M. A. et al. Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nat. Microbiol. 3, 1198–1205 (2018).
Article CAS PubMed Google Scholar
Maiello, P. et al. Rhesus macaques are more susceptible to progressive tuberculosis than cynomolgus macaques: a quantitative comparison. Infect. Immun. 86, e00505–e00517 (2018).
Article CAS PubMed PubMed Central Google Scholar
White, A. G. et al. Analysis of 18FDG PET/CT imaging as a tool for studying Mycobacterium tuberculosis infection and treatment in non-human primates. J. Vis. Exp. 5, 56375 (2017).
Lange, C. et al. 100 years of Mycobacterium bovis bacille Calmette–Guerin. Lancet Infect. Dis. 22, e2–e12 (2022).
Article CAS PubMed Google Scholar
Hassanzad, M., Valinejadi, A., Darougar, S., Hashemitari, S. K. & Velayati, A. A. Disseminated Bacille Calmette–Guerin infection at a glance: a mini review of the literature. Adv. Respir. Med. 87, 239–242 (2019).
Darrah, P. A. et al. Airway T cells are a correlate of i.v. Bacille Calmette–Guerin-mediated protection against tuberculosis in rhesus macaques. Cell Host Microbe 31, 962–977.e8 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sakai, S., Mayer-Barber, K. D. & Barber, D. L. Defining features of protective CD4 T cell responses to Mycobacterium tuberculosis. Curr. Opin. Immunol. 29, 137–142 (2014).
Article CAS PubMed Google Scholar
Chapman, J., Goyal, A. & Azevedo, A. M. Splenomegaly (StatPearls Publishing, 2024).
Larson, E. C. et al. Intravenous Bacille Calmette–Guerin vaccination protects simian immunodeficiency virus-infected macaques from tuberculosis. Nat. Microbiol. 8, 2080–2092 (2023).
Article CAS PubMed PubMed Central Google Scholar
Rodgers, M. A. et al. Preexisting simian immunodeficiency virus infection increases susceptibility to tuberculosis in Mauritian cynomolgus macaques. Infect. Immun. 86, e00565-18 (2018).
Article CAS PubMed PubMed Central Google Scholar
Mittrucker, H. W. et al. Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc. Natl Acad. Sci. USA 104, 12434–12439 (2007).
Article PubMed PubMed Central Google Scholar
Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9, 533–539 (2003).
Article CAS PubMed Google Scholar
Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).
留言 (0)