Streptomyces secretes a siderophore that sensitizes competitor bacteria to phage infection

Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).

Article  CAS  PubMed  Google Scholar 

Westhoff, S., Kloosterman, A. M., Hoesel, S. F. A. V., Wezel, G. P. V. & Rozen, D. E. Competition sensing changes antibiotic production in Streptomyces. mBio 12, e02729-20 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Valle, J. et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl Acad. Sci. USA 103, 12558–12563 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

Article  CAS  PubMed  Google Scholar 

Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

Article  CAS  PubMed  Google Scholar 

Koskella, B. & Meaden, S. Understanding bacteriophage specificity in natural microbial communities. Viruses 5, 806–823 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

Article  CAS  PubMed  Google Scholar 

Otsuji, N., Sekiguchi, M., Iijima, T. & Takagi, Y. Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature 184, 1079–1080 (1959).

Article  CAS  Google Scholar 

Jancheva, M. & Böttcher, T. A metabolite of Pseudomonas triggers prophage-selective lysogenic to lytic conversion in Staphylococcus aureus. J. Am. Chem. Soc. 143, 8344–8351 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silpe, J. E., Wong, J. W. H., Owen, S. V., Baym, M. & Balskus, E. P. The bacterial toxin colibactin triggers prophage induction. Nature 603, 315–320 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardy, A., Kever, L. & Frunzke, J. Antiphage small molecules produced by bacteria – beyond protein-mediated defenses. Trends Microbiol. 31, 92–106 (2023).

Article  CAS  PubMed  Google Scholar 

Lautru, S., Deeth, R. J., Bailey, L. M. & Challis, G. L. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol. 1, 265–269 (2005).

Article  CAS  PubMed  Google Scholar 

Williams, J. C. et al. Synthesis of the siderophore coelichelin and its utility as a probe in the study of bacterial metal sensing and response. Org. Lett. 21, 679–682 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Challis, G. L. & Ravel, J. Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol. Lett. 187, 111–114 (2000).

Article  CAS  PubMed  Google Scholar 

Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010).

Article  CAS  PubMed  Google Scholar 

May, J. J., Wendrich, T. M. & Marahiel, M. A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 276, 7209–7217 (2001).

Article  CAS  PubMed  Google Scholar 

Schneider, R. & Hantke, K. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol. Microbiol. 8, 111–121 (1993).

Article  CAS  PubMed  Google Scholar 

Abergel, R. J., Zawadzka, A. M., Hoette, T. M. & Raymond, K. N. Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J. Am. Chem. Soc. 131, 12682–12692 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dertz, E. A., Xu, J., Stintzi, A. & Raymond, K. N. Bacillibactin-mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 128, 22–23 (2006).

Article  CAS  PubMed  Google Scholar 

Ollinger, J., Song, K.-B., Antelmann, H., Hecker, M. & Helmann, J. D. Role of the fur regulon in iron transport in Bacillus subtilis. J. Bacteriol. 188, 3664–3673 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallet, R., Kannoly, S. & Wang, I.-N. Effects of bacteriophage traits on plaque formation. BMC Microbiol. 11, 181 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Zang, Z., Park, K. J. & Gerdt, J. P. A metabolite produced by gut microbes represses phage infections in Vibrio cholerae. ACS Chem. Biol. 17, 2396–2403 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bokinsky, G. et al. HipA-triggered growth arrest and beta-lactam tolerance in Escherichia coli are mediated by RelA-dependent ppGpp synthesis. J. Bacteriol. 195, 3173–3182 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woody, M. A. & Cliver, D. O. Effects of temperature and host cell growth phase on replication of F-specific RNA coliphage Q beta. Appl. Environ. Microbiol. 61, 1520–1526 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bryan, D., El-Shibiny, A., Hobbs, Z., Porter, J. & Kutter, E. M. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front. Microbiol. 7, 1391 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Los, M. et al. Effective inhibition of lytic development of bacteriophages lambda, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol. 7, 13 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Rittershaus, E. S. C., Baek, S.-H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13, 643–651 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips, Z. E. & Strauch, M. A. Bacillus subtilis sporulation and stationary phase gene expression. Cell. Mol. Life Sci. 59, 392–402 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ireton, K., Rudner, D. Z., Siranosian, K. J. & Grossman, A. D. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev. 7, 283–294 (1993).

Article  CAS 

留言 (0)

沒有登入
gif