Altshuler A, Amitai-Lange A, Tarazi N, Dey S, Strinkovsky L, Hadad-Porat S, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing. Cell Stem Cell. 2021;28(7):1248-1261.e8. https://doi.org/10.1016/j.stem.2021.04.003.
Article CAS PubMed PubMed Central Google Scholar
Li D-Q, Kim S, Li J-M, Gao Q, Choi J, Bian F, et al. Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf. 2021;20:20–32. https://doi.org/10.1016/j.jtos.2020.12.004.
Article PubMed PubMed Central Google Scholar
Aketa N, Kasai M, Noda S, Asano J, Kunieda A, Kawanishi S, et al. Insights into the clinical development of regenerative medical products through a comparison of three cell-based products recently approved for limbal stem cell deficiency. Ocul Surf. 2023;29:220–5. https://doi.org/10.1016/j.jtos.2023.05.008.
Fang F, Li S, Sun H, Fu Y, Shao C. Clinical and pathologic characterization of a mouse model of graded limbal stem cell deficiency. Exp Eye Res. 2024;244:109942. https://doi.org/10.1016/j.exer.2024.109942.
Article CAS PubMed Google Scholar
Mimouni M, Cole E, Kim SJ, Schiff J, Cardella C, Tinckam KJ, et al. Outcomes of keratolimbal allograft from ABO compatible donors for severe bilateral limbal stem cell deficiency. Ocul Surf. 2023;27:48–53. https://doi.org/10.1016/j.jtos.2022.11.002.
Delic NC, Cai JR, Watson SL, Downie LE, Di Girolamo N. Evaluating the clinical translational relevance of animal models for limbal stem cell deficiency: a systematic review. Ocul Surf. 2022;23:169–83. https://doi.org/10.1016/j.jtos.2021.09.006.
Oie Y, Sugita S, Yokokura S, Nakazawa T, Tomida D, Satake Y, et al. Clinical trial of autologous cultivated limbal epithelial cell sheet transplantation for patients with limbal stem cell deficiency. Ophthalmology. 2023;130(6):608–14. https://doi.org/10.1016/j.ophtha.2023.01.016.
Park M, Zhang R, Pandzic E, Sun M, Coulson-Thomas VJ, Di Girolamo N. Plasticity of ocular surface epithelia: using a murine model of limbal stem cell deficiency to delineate metaplasia and transdifferentiation. Stem Cell Rep. 2022;17(11):2451–66. https://doi.org/10.1016/j.stemcr.2022.09.011.
Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlötzer-Schrehardt U, Kruse FE, et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells. 2011;29(1):57–66. https://doi.org/10.1002/stem.550.
Article CAS PubMed Google Scholar
Dos Santos A, Balayan A, Funderburgh ML, Ngo J, Funderburgh JL, Deng SX. Differentiation capacity of human mesenchymal stem cells into keratocyte lineage. Invest Ophthalmol Vis Sci. 2019;60 (8):3013–3023. https://doi.org/10.1167/iovs.19-27008
Ye EA, Chung HS, Park Y, Sunwoo JH, Lee W, Kim J, et al. Induction of corneal endothelial-like cells from mesenchymal stem cells of the umbilical cord. Int J Mol Sci. 2022;23(23):15408. https://doi.org/10.3390/ijms232315408.
Article CAS PubMed PubMed Central Google Scholar
Vattulainen M, Ilmarinen T, Viheriälä T, Jokinen V, Skottman H. Corneal epithelial differentiation of human pluripotent stem cells generates ABCB5+ and ∆Np63α+ Cells with limbal cell characteristics and high wound healing capacity. Stem Cell Res Ther. 2021;12(1):609. https://doi.org/10.1186/s13287-021-02673-3.
Article CAS PubMed PubMed Central Google Scholar
Grönroos P, Ilmarinen T, Skottman H. Directed differentiation of human pluripotent stem cells towards corneal endothelial-like cells under defined conditions. Cells. 2021;10(2):331. https://doi.org/10.3390/cells10020331.
Article CAS PubMed PubMed Central Google Scholar
Zhao X-Y, Xie H-T, Duan C-Y, Li J, Zhang M-C. Rat limbal niche cells can induce transdifferentiation of oral mucosal epithelial cells into corneal epithelial-like cells in vitro. Stem Cell Res Ther. 2018;9(1):256. https://doi.org/10.1186/s13287-018-0996-9.
Article CAS PubMed PubMed Central Google Scholar
Xiao Y-T, Xie H-T, Liu X, Duan C-Y, Qu J-Y, Zhang M-C, et al. Subconjunctival injection of transdifferentiated oral mucosal epithelial cells for limbal stem cell deficiency in rats. J Histochem Cytochem. 2021;69(3):177–90. https://doi.org/10.1369/0022155420980071.
Article CAS PubMed Google Scholar
Chen H-CJ, Chen H-L, Lai J-Y, Chen C-C, Tsai Y-J, Kuo M-T, et al. Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci. 2009;50(10):4660–8. https://doi.org/10.1167/iovs.09-3377.
Gong D, Yan C, Yu F, Yan D, Wu N, Chen L, et al. Direct oral mucosal epithelial transplantation supplies stem cells and promotes corneal wound healing to treat refractory persistent corneal epithelial defects. Exp Eye Res. 2022;215:108934. https://doi.org/10.1016/j.exer.2022.108934.
Article CAS PubMed Google Scholar
Novelli F, Ganini C, Melino G, Nucci C, Han Y, Shi Y, et al. P63 in corneal and epidermal differentiation. Biochem Biophys Res Commun. 2022;610:15–22. https://doi.org/10.1016/j.bbrc.2022.04.022.
Article CAS PubMed Google Scholar
Ghaffarinia A, Ayaydin F, Póliska S, Manczinger M, Bolla BS, Flink LB, et al. Psoriatic resolved skin epidermal keratinocytes retain disease-residual transcriptomic and epigenomic profiles. Int J Mol Sci. 2023;24(5):4556. https://doi.org/10.3390/ijms24054556.
Article CAS PubMed PubMed Central Google Scholar
Rikken G, Niehues H, van den Bogaard EH. Organotypic 3D skin models: human epidermal equivalent cultures from primary keratinocytes and immortalized keratinocyte cell lines. Methods Mol Biol. 2020;2154:45–61. https://doi.org/10.1007/978-1-0716-0648-3_5.
Article CAS PubMed Google Scholar
Gopakumar V, Chatterjee N, Parameswaran S, Nirmala S, Krishnakumar S. In vitro transdifferentiation of human skin keratinocytes to corneal epithelial cells. Cytotherapy. 2016;18(5):673–85. https://doi.org/10.1016/j.jcyt.2016.02.005.
Article CAS PubMed Google Scholar
Sakurai M, Hayashi R, Kageyama T, Yamato M, Nishida K. Induction of putative stratified epithelial progenitor cells in vitro from mouse-induced pluripotent stem cells. J Artif Organs. 2011;14(1):58–66. https://doi.org/10.1007/s10047-010-0547-3.
Article CAS PubMed Google Scholar
Pearton DJ, Yang Y, Dhouailly D. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc Natl Acad Sci U S A. 2005;102(10):3714–9. https://doi.org/10.1073/pnas.0500344102.
Article CAS PubMed PubMed Central Google Scholar
Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018;5(3):245–55. https://doi.org/10.1016/j.gendis.2018.06.001.
Article CAS PubMed PubMed Central Google Scholar
Hindam MO, Ahmed LA, El Sayed NS, Khattab M, Sallam NA. Repositioning of baricitinib for management of memory impairment in ovariectomized/D-galactose treated rats: a potential role of JAK2/STAT3-PI3K/AKT/mTOR signaling pathway. Life Sci. 2024;351:122838. https://doi.org/10.1016/j.lfs.2024.122838.
Article CAS PubMed Google Scholar
Dai X-Y, Liu L, Song F-H, Gao S-J, Wu J-Y, Li D-Y, et al. Targeting the JAK2/STAT3 signaling pathway for chronic pain. Aging Dis. 2024;15(1):186–200.
Article PubMed PubMed Central Google Scholar
Zhu L, Chen C, Wu S, Guo H, Li L, Wang L, et al. PAX6-WNK2 axis governs corneal epithelial homeostasis. Invest Ophthalmol Vis Sci. 2024;65(12):40. https://doi.org/10.1167/iovs.65.12.40.
留言 (0)