Transdifferentiation of rat keratinocyte progenitors to corneal epithelial cells by limbal niche via the STAT3/PI3K/AKT signaling pathway

Altshuler A, Amitai-Lange A, Tarazi N, Dey S, Strinkovsky L, Hadad-Porat S, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing. Cell Stem Cell. 2021;28(7):1248-1261.e8. https://doi.org/10.1016/j.stem.2021.04.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D-Q, Kim S, Li J-M, Gao Q, Choi J, Bian F, et al. Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf. 2021;20:20–32. https://doi.org/10.1016/j.jtos.2020.12.004.

Article  PubMed  PubMed Central  Google Scholar 

Aketa N, Kasai M, Noda S, Asano J, Kunieda A, Kawanishi S, et al. Insights into the clinical development of regenerative medical products through a comparison of three cell-based products recently approved for limbal stem cell deficiency. Ocul Surf. 2023;29:220–5. https://doi.org/10.1016/j.jtos.2023.05.008.

Article  PubMed  Google Scholar 

Fang F, Li S, Sun H, Fu Y, Shao C. Clinical and pathologic characterization of a mouse model of graded limbal stem cell deficiency. Exp Eye Res. 2024;244:109942. https://doi.org/10.1016/j.exer.2024.109942.

Article  CAS  PubMed  Google Scholar 

Mimouni M, Cole E, Kim SJ, Schiff J, Cardella C, Tinckam KJ, et al. Outcomes of keratolimbal allograft from ABO compatible donors for severe bilateral limbal stem cell deficiency. Ocul Surf. 2023;27:48–53. https://doi.org/10.1016/j.jtos.2022.11.002.

Article  PubMed  Google Scholar 

Delic NC, Cai JR, Watson SL, Downie LE, Di Girolamo N. Evaluating the clinical translational relevance of animal models for limbal stem cell deficiency: a systematic review. Ocul Surf. 2022;23:169–83. https://doi.org/10.1016/j.jtos.2021.09.006.

Article  PubMed  Google Scholar 

Oie Y, Sugita S, Yokokura S, Nakazawa T, Tomida D, Satake Y, et al. Clinical trial of autologous cultivated limbal epithelial cell sheet transplantation for patients with limbal stem cell deficiency. Ophthalmology. 2023;130(6):608–14. https://doi.org/10.1016/j.ophtha.2023.01.016.

Article  PubMed  Google Scholar 

Park M, Zhang R, Pandzic E, Sun M, Coulson-Thomas VJ, Di Girolamo N. Plasticity of ocular surface epithelia: using a murine model of limbal stem cell deficiency to delineate metaplasia and transdifferentiation. Stem Cell Rep. 2022;17(11):2451–66. https://doi.org/10.1016/j.stemcr.2022.09.011.

Article  CAS  Google Scholar 

Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlötzer-Schrehardt U, Kruse FE, et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells. 2011;29(1):57–66. https://doi.org/10.1002/stem.550.

Article  CAS  PubMed  Google Scholar 

Dos Santos A, Balayan A, Funderburgh ML, Ngo J, Funderburgh JL, Deng SX. Differentiation capacity of human mesenchymal stem cells into keratocyte lineage. Invest Ophthalmol Vis Sci. 2019;60 (8):3013–3023. https://doi.org/10.1167/iovs.19-27008

Ye EA, Chung HS, Park Y, Sunwoo JH, Lee W, Kim J, et al. Induction of corneal endothelial-like cells from mesenchymal stem cells of the umbilical cord. Int J Mol Sci. 2022;23(23):15408. https://doi.org/10.3390/ijms232315408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vattulainen M, Ilmarinen T, Viheriälä T, Jokinen V, Skottman H. Corneal epithelial differentiation of human pluripotent stem cells generates ABCB5+ and ∆Np63α+ Cells with limbal cell characteristics and high wound healing capacity. Stem Cell Res Ther. 2021;12(1):609. https://doi.org/10.1186/s13287-021-02673-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grönroos P, Ilmarinen T, Skottman H. Directed differentiation of human pluripotent stem cells towards corneal endothelial-like cells under defined conditions. Cells. 2021;10(2):331. https://doi.org/10.3390/cells10020331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao X-Y, Xie H-T, Duan C-Y, Li J, Zhang M-C. Rat limbal niche cells can induce transdifferentiation of oral mucosal epithelial cells into corneal epithelial-like cells in vitro. Stem Cell Res Ther. 2018;9(1):256. https://doi.org/10.1186/s13287-018-0996-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao Y-T, Xie H-T, Liu X, Duan C-Y, Qu J-Y, Zhang M-C, et al. Subconjunctival injection of transdifferentiated oral mucosal epithelial cells for limbal stem cell deficiency in rats. J Histochem Cytochem. 2021;69(3):177–90. https://doi.org/10.1369/0022155420980071.

Article  CAS  PubMed  Google Scholar 

Chen H-CJ, Chen H-L, Lai J-Y, Chen C-C, Tsai Y-J, Kuo M-T, et al. Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci. 2009;50(10):4660–8. https://doi.org/10.1167/iovs.09-3377.

Article  PubMed  Google Scholar 

Gong D, Yan C, Yu F, Yan D, Wu N, Chen L, et al. Direct oral mucosal epithelial transplantation supplies stem cells and promotes corneal wound healing to treat refractory persistent corneal epithelial defects. Exp Eye Res. 2022;215:108934. https://doi.org/10.1016/j.exer.2022.108934.

Article  CAS  PubMed  Google Scholar 

Novelli F, Ganini C, Melino G, Nucci C, Han Y, Shi Y, et al. P63 in corneal and epidermal differentiation. Biochem Biophys Res Commun. 2022;610:15–22. https://doi.org/10.1016/j.bbrc.2022.04.022.

Article  CAS  PubMed  Google Scholar 

Ghaffarinia A, Ayaydin F, Póliska S, Manczinger M, Bolla BS, Flink LB, et al. Psoriatic resolved skin epidermal keratinocytes retain disease-residual transcriptomic and epigenomic profiles. Int J Mol Sci. 2023;24(5):4556. https://doi.org/10.3390/ijms24054556.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rikken G, Niehues H, van den Bogaard EH. Organotypic 3D skin models: human epidermal equivalent cultures from primary keratinocytes and immortalized keratinocyte cell lines. Methods Mol Biol. 2020;2154:45–61. https://doi.org/10.1007/978-1-0716-0648-3_5.

Article  CAS  PubMed  Google Scholar 

Gopakumar V, Chatterjee N, Parameswaran S, Nirmala S, Krishnakumar S. In vitro transdifferentiation of human skin keratinocytes to corneal epithelial cells. Cytotherapy. 2016;18(5):673–85. https://doi.org/10.1016/j.jcyt.2016.02.005.

Article  CAS  PubMed  Google Scholar 

Sakurai M, Hayashi R, Kageyama T, Yamato M, Nishida K. Induction of putative stratified epithelial progenitor cells in vitro from mouse-induced pluripotent stem cells. J Artif Organs. 2011;14(1):58–66. https://doi.org/10.1007/s10047-010-0547-3.

Article  CAS  PubMed  Google Scholar 

Pearton DJ, Yang Y, Dhouailly D. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc Natl Acad Sci U S A. 2005;102(10):3714–9. https://doi.org/10.1073/pnas.0500344102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018;5(3):245–55. https://doi.org/10.1016/j.gendis.2018.06.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hindam MO, Ahmed LA, El Sayed NS, Khattab M, Sallam NA. Repositioning of baricitinib for management of memory impairment in ovariectomized/D-galactose treated rats: a potential role of JAK2/STAT3-PI3K/AKT/mTOR signaling pathway. Life Sci. 2024;351:122838. https://doi.org/10.1016/j.lfs.2024.122838.

Article  CAS  PubMed  Google Scholar 

Dai X-Y, Liu L, Song F-H, Gao S-J, Wu J-Y, Li D-Y, et al. Targeting the JAK2/STAT3 signaling pathway for chronic pain. Aging Dis. 2024;15(1):186–200.

Article  PubMed  PubMed Central  Google Scholar 

Zhu L, Chen C, Wu S, Guo H, Li L, Wang L, et al. PAX6-WNK2 axis governs corneal epithelial homeostasis. Invest Ophthalmol Vis Sci. 2024;65(12):40. https://doi.org/10.1167/iovs.65.12.40.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif