Karagianni P, Giannouli S, Voulgarelis M. From the (Epi)genome to metabolism and Vice Versa; examples from hematologic malignancy. Int J Mol Sci [Internet]. 2021 22(12).
Juliusson G, Hough R, Leukemia. 2016 [cited 1/19/2024]. In: Tumors in Adolescents and Young Adults [Internet]. S.Karger AG, [cited 1/19/2024]; [0]. Available from: https://doi.org/10.1159/000447076
Damlaj M, El Fakih R, Hashmi SK. Evolution of survivorship in lymphoma, myeloma and leukemia: metamorphosis of the field into long term follow-up care. Blood Rev. 2019;33:63–73.
Parikh SA. Chronic lymphocytic leukemia treatment algorithm 2018. Blood Cancer J. 2018;8(10):93.
Article PubMed PubMed Central Google Scholar
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, et al. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 2019;234(6):8465–86.
Article CAS PubMed Google Scholar
Litwińska Z, Łuczkowska K, Machaliński B. Extracellular vesicles in hematological malignancies. Leuk Lymphoma. 2019;60(1):29–36.
Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and other Extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–89.
Article CAS PubMed Google Scholar
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.
Bobrie A, Colombo M, Raposo G, Théry C. Exosome Secretion: Molecular mechanisms and roles in Immune responses. Traffic. 2011;12(12):1659–68.
Article CAS PubMed Google Scholar
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.
Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303.
Article CAS PubMed Google Scholar
Dai S, Wan T, Wang B, Zhou X, Xiu F, Chen T, et al. More efficient induction of HLA-A*0201-Restricted and Carcinoembryonic Antigen (CEA)–Specific CTL response by immunization with Exosomes prepared from heat-stressed CEA-Positive tumor cells. Clin Cancer Res. 2005;11(20):7554–63.
Article CAS PubMed Google Scholar
Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to Interleukin-2. Cancer Res. 2007;67(15):7458–66.
Article CAS PubMed Google Scholar
Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, et al. Human colorectal Cancer cells induce T-Cell death through release of proapoptotic microvesicles: role in Immune escape. Gastroenterology. 2005;128(7):1796–804.
Article CAS PubMed Google Scholar
Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived Exosomes Down-Modulate NKG2D Expression1. J Immunol. 2008;180(11):7249–58.
Article CAS PubMed Google Scholar
Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, et al. Murine mammary carcinoma exosomes promote Tumor Growth by suppression of NK Cell Function1. J Immunol. 2006;176(3):1375–85.
Article CAS PubMed Google Scholar
Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-Derived microvesicles Induce, Expand and Up-Regulate Biological Activities of Human Regulatory T Cells (Treg). PLoS ONE. 2010;5(7):e11469.
Article PubMed PubMed Central Google Scholar
Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth Factor-β–Mediated suppressive activity on T lymphocytes. Cancer Res. 2006;66(18):9290–8.
Article CAS PubMed Google Scholar
Yang C, Yang H, Liu J, Zhu L, Yu S, Zhang X, et al. Focus on exosomes: novel pathogenic components of leukemia. Am J cancer Res. 2019;9(8):1815.
CAS PubMed PubMed Central Google Scholar
Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles-diagnostic and therapeutic implications. Int J Oncol. 2015;46(1):17–27.
Article CAS PubMed Google Scholar
Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Roberts CT Jr, et al. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 2013;73(2):918–29.
Article CAS PubMed Google Scholar
Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26(28):4148–57.
Article CAS PubMed Google Scholar
Hatem AS, Ghonaim R, Haggag R. Prognostic impact of microRNAs (miR-155, miR-10a, let-7a) on the outcome of adult patients with Acute myeloid leukemia. Zagazig Univ Med J. 2021;27(5):810–25.
Emmrich S, Henke K, Li Z, Schöning J, Schambach A, Reinhardt D, et al. Deciphering the role of Mir-99∼ 125 clusters in the hematopoietic system. Blood. 2011;118(21):213.
Zhu Y-D, Wang L, Sun C, Fan L, Zhu D-X, Fang C, et al. Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia. Med Oncol. 2012;29:2323–31.
Article CAS PubMed Google Scholar
Szczepanek J. Role of microRNA dysregulation in childhood acute leukemias: Diagnostics, monitoring and therapeutics: a comprehensive review. World J Clin Oncol. 2020;11(6):348.
Article PubMed PubMed Central Google Scholar
Kinjyo I, Bragin D, Grattan R, Winter SS, Wilson BS. Leukemia-derived exosomes and cytokines pave the way for entry into the brain. J Leukoc Biol. 2019;105(4):741–53.
Article CAS PubMed Google Scholar
Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a src-dependent fashion. Angiogenesis. 2012;15:33–45.
Article CAS PubMed Google Scholar
Mineo DM, Garfield SH, Alessandro R, Kohn. EC, editors. Exosomes released by K562 chronic myeloid leukemia cells promote endothelial cell tubular differentiation through uptake and cell-to-cell transfer. Cancer Research; 2011: amer assoc cancer research 615 chestnut ST, 17th floor, philadelphia, PA ….
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci. 2023;312:121206.
Article CAS PubMed Google Scholar
Eshghi F, Tahmasebi S, Alimohammadi M, Soudi S, Khaligh SG, Khosrojerdi A, et al. Study of immunomodulatory effects of mesenchymal stem cell-derived exosomes in a mouse model of LPS induced systemic inflammation. Life Sci. 2022;310:120938.
Article CAS PubMed Google Scholar
Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. 2023;31(1):145–69.
Article CAS PubMed PubMed Central Google Scholar
Nielsen T, Kristensen SR, Gregersen H, Teodorescu EM, Christiansen G, Pedersen S. Extracellular vesicle-associated procoagulant phospholipid and tissue factor activity in multiple myeloma. PLoS ONE. 2019;14(1):e0210835.
Article CAS PubMed PubMed Central Google Scholar
Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem. 2016;291(4):1652–63.
留言 (0)