Formation of cognitive maps in large-scale environments by sensorimotor integration

Alexander AS, Carstensen LC, Hinman JR, Raudies F, Chapman GW, Hasselmo ME (2020) Egocentric boundary vector tuning of the retrosplenial cortex. Sci Adv 6(8):eaaz2322

Article  PubMed  PubMed Central  Google Scholar 

Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, Pritzel A, Chadwick MJ, Degris T, Modayil J et al (2018) Vector-based navigation using grid-like representations in artificial agents. Nature 557(7705):429–433

Article  CAS  PubMed  Google Scholar 

Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser M-B (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18(12):1200–1212

Article  PubMed  Google Scholar 

Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5(2):e1000291

Article  PubMed  PubMed Central  Google Scholar 

Burgess N, Barry C (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9):801–812

Article  PubMed  PubMed Central  Google Scholar 

Bush D, Barry C, Manson D, Burgess N (2015) Using grid cells for navigation. Neuron 87(3):507–520

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cash SS, Yuste R (1998) Input summation by cultured pyramidal neurons is linear and position-independent. J Neurosci 18(1):10–15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cash SS, Yuste R (1999) Linear summation of excitatory inputs by ca1 pyramidal neurons. Neuron 22(2):383–394

Article  CAS  PubMed  Google Scholar 

Chen G, King JA, Burgess N, O’Keefe J (2013) How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci USA 110(1):378–383

Article  CAS  PubMed  Google Scholar 

Cheng S, Frank LM (2011) The structure of networks that produce the transformation from grid cells to place cells. Neuroscience 197:293

Article  CAS  PubMed  Google Scholar 

Chen Z, Lam O, Jacobson A, Milford M (2014) Convolutional neural network-based place recognition. In: Proceedings of the 16th Australasian Conference on Robotics and Automation, pp 1–8

Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of extended experience. Neuron 63(4):497–507

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Almeida L, Idiart M, Lisman JE (2009) The input-output transformation of the hippocampal granule cells: from grid cells to place fields. J Neurosci 29(23):7504–7512

Article  PubMed  PubMed Central  Google Scholar 

Eliav T, Maimon SR, Aljadeff J, Tsodyks M, Ginosar G, Las L, Ulanovsky N (2021) Multiscale representation of very large environments in the hippocampus of flying bats. Science 372(6545):eabg4020

Article  CAS  PubMed  Google Scholar 

Feigenbaum JD, Rolls ET (1991) Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate. Psychobiology 19(1):21–40

Article  Google Scholar 

Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the ca1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28(44):11250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franco L, Rolls ET, Aggelopoulos NC, Jerez JM (2007) Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biol Cybern 96(6):547–560

Article  PubMed  Google Scholar 

Franzius M, Vollgraf R, Wiskott L (2007) From grids to places. J Comput Neurosci 22(3):297–299

Article  CAS  PubMed  Google Scholar 

Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26(16):4266–4276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264

Article  CAS  PubMed  Google Scholar 

Gagliardo A, Ioalé P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19(1):311–315

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal ca1 pyramidal neurons. J Neurosci 26(7):2088–2100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golledge RG (2003) Human wayfinding and cognitive maps. In: Rockman M, Steele J (eds) Flow cytometry protocols. Routledge, London, pp 25–43

Google Scholar 

Gorchetchnikov A, Grossberg S (2007) Space, time and learning in the hippocampus: how fine spatial and temporal scales are expanded into population codes for behavioral control. Neural Netw 20(2):182–193

Article  PubMed  Google Scholar 

Grieves RM, Jedidi-Ayoub S, Mishchanchuk K, Liu A, Renaudineau S, Jeffery KJ (2020) The place-cell representation of volumetric space in rats. Nat Commun 11(1):789

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guazzelli A, Bota M, Arbib MA (2001) Competitive Hebbian learning and the hippocampal place cell system: modeling the interaction of visual and path integration cues. Hippocampus 11(3):216–239

Article  CAS  PubMed  Google Scholar 

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801

Article  CAS  PubMed  Google Scholar 

Hoffmann S, Beetz MJ, Stöckl A, Mesce KA (2023) Naturalistic neuroscience-towards a full cycle from lab to field. Front Neural Circ 17:1251771

Article  Google Scholar 

Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser M (2008) Finite scale of spatial representation in the hippocampus. Science 321(5885):140–143

Article  CAS  PubMed  Google Scholar 

Knierim JJ, Kudrimoti HS, McNaughton BL (1995) Place cells, head direction cells, and the learning of landmark stability. J Neurosci 15(3):1648–1659

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kringelbach ML, Perl YS, Tagliazucchi E, Deco G (2023) Toward naturalistic neuroscience: mechanisms underlying the flattening of brain hierarchy in movie-watching compared to rest and task. Sci Adv 9(2):eade6049

Article  PubMed  PubMed Central  Google Scholar 

Kropff E, Treves A (2008) The emergence of grid cells: Intelligent design or just adaptation? Hippocampus 18(12):1256–1269

Article  PubMed  Google Scholar 

Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315(5814):961

Article  CAS  PubMed 

留言 (0)

沒有登入
gif