Abasolo D, Hornero R, Gomez C, Garcia M, Lopez M (2006) Analysis of eeg background activity in Alzheimer’s disease patients with lempel-ziv complexity and central tendency measure. Med Eng Phys 28(4):315–322
Abásolo D, Hornero R, Escudero J, Espino P (2008) A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer’s disease. IEEE Trans Biomed Eng 55:2171–9. https://doi.org/10.1109/TBME.2008.923145
Abasolo D, Hornero R, Escudero J, Gomez C, Garcia M, Lopez M (2006) Approximate entropy and mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. In: IET 3rd international conference on advances in medical, signal and information processing - MEDSIP, pp 1–4
Abásolo D, Hornero R, Gómez C, Escudero J, Espino P (2009) Electroencephalogram background activity characterization with detrended moving average in Alzheimer’s disease patients. 6th IEEE international symposium on intelligent signal processing - proceedings. 10.1109/WISP.2009.5286531
Al-nuaimi AHH, Jammeh E, Sun L, Ifeachor E (2018) Complexity measures for quantifying changes in electroencephalogram in Alzheimer’s disease. Complexity. https://doi.org/10.1155/2018/8915079
Alvi AM, Siuly S, Wang H, Wang K, Whittaker F (2022) A deep learning based framework for diagnosis of mild cognitive impairment. Knowl-Based Syst 248:108815. https://doi.org/10.1016/j.knosys.2022.108815
Alvi AM, Siuly S, Wang H (2023) A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals. IEEE Trans Emerg Topics Comput Intell 7(2):375–388. https://doi.org/10.1109/TETCI.2022.3186180
Amezquita-Sanchez JP, Mammone N, Morabito FC, Adeli H (2021) A new dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms. Clin Neurol Neurosurg 201:106446. https://doi.org/10.1016/j.clineuro.2020.106446
Ansari R, Kim CW, Dedovic M (1999) Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE Trans Circuits Syst II: Analog Digital Signal Process 46(12):1487–1496. https://doi.org/10.1109/82.809534
Araujo T, Teixeira J, Rodrigues P (2022) Smart-data-driven system for alzheimer disease detection through electroencephalographic signals. Bioengineering 9:141. https://doi.org/10.3390/bioengineering9040141
Article PubMed PubMed Central Google Scholar
Azami H, Abásolo D, Simons S, Escudero J (2017) Univariate and multivariate generalized multiscale entropy to characterise EEG signals in Alzheimer’s disease. Entropy 19(1):1–17. https://doi.org/10.3390/e19010031
Calub GIA, Elefante EN, Galisanao JCA, Iguid SLBG, Salise JC, Prado SV (2023) EEG-based classification of stages of Alzheimer’s disease (AD) and mild cognitive impairment (MCI). In: 2023 5th international conference on bio-engineering for smart technologies (BioSMART), pp 1–6. 10.1109/BioSMART58455.2023.10162117
Cassani R, Falk TH, Fraga FJ, Cecchi M, Moore DK, Anghinah R (2017) Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomed Signal Process Control 33:261–271. https://doi.org/10.1016/j.bspc.2016.12.009
Cejnek Matous VO (2021) Novelty detection-based approach for Alzheimer’s disease and mild cognitive impairment diagnosis from EEG. Med Bioll Eng Comput 59:2287–2296. https://doi.org/10.1007/s11517-021-02427-6
Daniel Abásolo RH (2005) Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy. Clin Neurophysiol 116(8):1826–1834. https://doi.org/10.1016/j.clinph.2005.04.001
Ding Y, Chu Y, Liu M, Ling Z, Wang S, Li X, Li Y (2022) Fully automated discrimination of Alzheimer’s disease using resting-state electroencephalography signals. Quant Imag Med Surg 12:1063. https://doi.org/10.21037/qims-21-430
Dogan S, Baygin M, Taşcı B, Loh H, Barua PD, Tuncer T, Tan RS, Acharya UR (2022) Primate brain pattern-based automated Alzheimer’s disease detection model using eeg signals. Cogn Neurodyn 17:1–13. https://doi.org/10.1007/s11571-022-09859-2
Durongbhan P, Zhao Y, Chen L, Zis P, De Marco M, Unwin ZC, Venneri A, He X, Li S, Zhao Y, Blackburn DJ, Sarrigiannis PG (2019) A dementia classification framework using frequency and time-frequency features based on EEG signals. IEEE Trans Neural Syst Rehab Eng 27(5):826–835. https://doi.org/10.1109/TNSRE.2019.2909100
Escudero J, Abásolo D, Hornero R, Espino P, López M (2006) Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol Measur 27(11):1091–1106. https://doi.org/10.1088/0967-3334/27/11/004
Fiscon G, Weitschek E, De Cola MC, Felici G, Bertolazzi P (2018) An integrated approach based on EEG signals processing combined with supervised methods to classify Alzheimer’s disease patients. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 2750–2752. 10.1109/BIBM.2018.8621473
Fouad IA, Labib FE-ZM (2023) Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network. Biomed Signal Process Control 86:105266. https://doi.org/10.1016/j.bspc.2023.105266
Geng D, Wang C, Fu Z, Zhang Y, Yang K, An H (2022) Sleep eeg-based approach to detect mild cognitive impairment. Front Aging Neurosci 14:865558. https://doi.org/10.3389/fnagi.2022.865558
Article PubMed PubMed Central Google Scholar
Ieracitano C, Mammone N, Hussain A, Morabito FC (2020) A novel multi-modal machine learning-based approach for automatic classification of EEG recordings in dementia. Neural Netw 123:176–190. https://doi.org/10.1016/j.neunet.2019.12.006
Kachare PH, Sangle SB, Puri DV, Khubrani MM, Al-Shourbaji I (2024) Steadynet: spatiotemporal eeg analysis for dementia detection using convolutional neural network. Cognit Neurodyn, 1–14
Kachare P, Puri D, Sangle SB, Al-Shourbaji I, Jabbari A, Kirner R, Alameen A, Migdady H, Abualigah L (2024) Lcadnet: a novel light cnn architecture for eeg-based alzheimer disease detection. Phys Eng Sci Med, 1–14
Kamble A, Ghare PH, Kumar V (2023) Optimized rational dilation wavelet transform for automatic imagined speech recognition. IEEE Trans Instr Measur 72:1–10. https://doi.org/10.1109/TIM.2023.3241973
Khare SK, Nishad A, Upadhyay A, Bajaj V (2020) Classification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural network. Electron Lett 56(25):1359–1361. https://doi.org/10.1049/el.2020.2380
Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V (2005) Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 26(2):165–171. https://doi.org/10.1016/j.neurobiolaging.2004.03.008
Article CAS PubMed Google Scholar
Lo Giudice P, Mammone N, Morabito F, Pizzimenti R, Ursino D, Virgili L (2019) Leveraging network analysis to support experts in their analyses of subjects with MCI and AD. Med Biolog Eng Comput 57:1961–1983. https://doi.org/10.1007/s11517-019-02004-y
Lopes M, Cassani R, Falk T (2023) Using cnn saliency maps and eeg modulation spectra for improved and more interpretable machine learning-based Alzheimer’s disease diagnosis. Comput Intell Neurosci 2023:1–17. https://doi.org/10.1155/2023/3198066
McBride J, Zhao X, Munro N, Smith C, Jicha G, Hively L, Broster L, Schmitt F, Kryscio R, Jiang Y (2014) Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Computer Methods Programs Biomed 2014(114):153–163. https://doi.org/10.1016/j.cmpb.2014.01.019
Miltiadous A, Tzimourta K, Giannakeas N, Tsipouras M, Afrantou T, Ioannidis P, Tzallas A (2021) Alzheimer’s disease and frontotemporal dementia: a robust classification method of eeg signals and a comparison of validation methods. Diagnostics 11:1437. https://doi.org/10.3390/diagnostics11081437
Article PubMed PubMed Central Google Scholar
Miltiadous Andreas, Tzimourta Katerina, Afrantou Theodora, Ioannidis Panagiotis, Grigoriadis Nikolaos, Tsalikakis P (2023) A dataset of scalp eeg recordings of Alzheimer’s disease, frontotemporal dementia and healthy subjects from routine EEG. Data 8:95. https://doi.org/10.3390/data8060095
Nagare MB, Patil BD, Holambe RS (2020) On the design of biorthogonal halfband filterbanks with almost tight rational coefficients. IEEE Trans Circuits SystII: Express Briefs 67(4):790–794. https://doi.org/10.1109/TCSII.2019.2922745
Oltu B, Akşahin MF, Kibaroǧlu S (2021) A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection. Biomed Signal Process Control 63:102223. https://doi.org/10.1016/j.bspc.2020.102223
Pirrone D, Weitschek E, Di Paolo P, De Salvo S, De Cola MC (2022) EEG signal processing and supervised machine learning to early diagnose Alzheimer’s disease. Appl Sci 12(11):5413. https://doi.org/10.3390/app12115413
Puri DV, Nalbalwar SL, Nandgaonkar AB, Gawande JP, Wagh A (2023) Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks. Biomed Signal Process Control 81:104439. https://doi.org/10.1016/j.bspc.2022.104439
Puri DV, Nalbalwar SL, Ingle PP (2023) Eeg-based systematic explainable Alzheimer’s disease and mild cognitive impairment identification using novel rational dyadic biorthogonal wavelet filter banks. Circuits, Syst Signal Process 83:1–31
Puri DV, Gawande JP, Rajput JL, Nalbalwar SL (2023) A novel optimal wavelet filter banks for automated diagnosis of Alzheimer’s disease and mild cognitive impairment using electroencephalogram signals. Decision Analy J 9:100336. https://doi.org/10.1016/j.dajour.2023.100336
留言 (0)