Optimal time-frequency localized wavelet filters for identification of Alzheimer’s disease from EEG signals

Abasolo D, Hornero R, Gomez C, Garcia M, Lopez M (2006) Analysis of eeg background activity in Alzheimer’s disease patients with lempel-ziv complexity and central tendency measure. Med Eng Phys 28(4):315–322

Article  PubMed  Google Scholar 

Abásolo D, Hornero R, Escudero J, Espino P (2008) A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer’s disease. IEEE Trans Biomed Eng 55:2171–9. https://doi.org/10.1109/TBME.2008.923145

Article  PubMed  Google Scholar 

Abasolo D, Hornero R, Escudero J, Gomez C, Garcia M, Lopez M (2006) Approximate entropy and mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. In: IET 3rd international conference on advances in medical, signal and information processing - MEDSIP, pp 1–4

Abásolo D, Hornero R, Gómez C, Escudero J, Espino P (2009) Electroencephalogram background activity characterization with detrended moving average in Alzheimer’s disease patients. 6th IEEE international symposium on intelligent signal processing - proceedings. 10.1109/WISP.2009.5286531

Al-nuaimi AHH, Jammeh E, Sun L, Ifeachor E (2018) Complexity measures for quantifying changes in electroencephalogram in Alzheimer’s disease. Complexity. https://doi.org/10.1155/2018/8915079

Article  Google Scholar 

Alvi AM, Siuly S, Wang H, Wang K, Whittaker F (2022) A deep learning based framework for diagnosis of mild cognitive impairment. Knowl-Based Syst 248:108815. https://doi.org/10.1016/j.knosys.2022.108815

Article  Google Scholar 

Alvi AM, Siuly S, Wang H (2023) A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals. IEEE Trans Emerg Topics Comput Intell 7(2):375–388. https://doi.org/10.1109/TETCI.2022.3186180

Article  Google Scholar 

Amezquita-Sanchez JP, Mammone N, Morabito FC, Adeli H (2021) A new dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms. Clin Neurol Neurosurg 201:106446. https://doi.org/10.1016/j.clineuro.2020.106446

Article  PubMed  Google Scholar 

Ansari R, Kim CW, Dedovic M (1999) Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE Trans Circuits Syst II: Analog Digital Signal Process 46(12):1487–1496. https://doi.org/10.1109/82.809534

Article  Google Scholar 

Araujo T, Teixeira J, Rodrigues P (2022) Smart-data-driven system for alzheimer disease detection through electroencephalographic signals. Bioengineering 9:141. https://doi.org/10.3390/bioengineering9040141

Article  PubMed  PubMed Central  Google Scholar 

Azami H, Abásolo D, Simons S, Escudero J (2017) Univariate and multivariate generalized multiscale entropy to characterise EEG signals in Alzheimer’s disease. Entropy 19(1):1–17. https://doi.org/10.3390/e19010031

Article  Google Scholar 

Calub GIA, Elefante EN, Galisanao JCA, Iguid SLBG, Salise JC, Prado SV (2023) EEG-based classification of stages of Alzheimer’s disease (AD) and mild cognitive impairment (MCI). In: 2023 5th international conference on bio-engineering for smart technologies (BioSMART), pp 1–6. 10.1109/BioSMART58455.2023.10162117

Cassani R, Falk TH, Fraga FJ, Cecchi M, Moore DK, Anghinah R (2017) Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomed Signal Process Control 33:261–271. https://doi.org/10.1016/j.bspc.2016.12.009

Article  Google Scholar 

Cejnek Matous VO (2021) Novelty detection-based approach for Alzheimer’s disease and mild cognitive impairment diagnosis from EEG. Med Bioll Eng Comput 59:2287–2296. https://doi.org/10.1007/s11517-021-02427-6

Article  CAS  Google Scholar 

Daniel Abásolo RH (2005) Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy. Clin Neurophysiol 116(8):1826–1834. https://doi.org/10.1016/j.clinph.2005.04.001

Article  PubMed  Google Scholar 

Ding Y, Chu Y, Liu M, Ling Z, Wang S, Li X, Li Y (2022) Fully automated discrimination of Alzheimer’s disease using resting-state electroencephalography signals. Quant Imag Med Surg 12:1063. https://doi.org/10.21037/qims-21-430

Article  Google Scholar 

Dogan S, Baygin M, Taşcı B, Loh H, Barua PD, Tuncer T, Tan RS, Acharya UR (2022) Primate brain pattern-based automated Alzheimer’s disease detection model using eeg signals. Cogn Neurodyn 17:1–13. https://doi.org/10.1007/s11571-022-09859-2

Article  Google Scholar 

Durongbhan P, Zhao Y, Chen L, Zis P, De Marco M, Unwin ZC, Venneri A, He X, Li S, Zhao Y, Blackburn DJ, Sarrigiannis PG (2019) A dementia classification framework using frequency and time-frequency features based on EEG signals. IEEE Trans Neural Syst Rehab Eng 27(5):826–835. https://doi.org/10.1109/TNSRE.2019.2909100

Article  Google Scholar 

Escudero J, Abásolo D, Hornero R, Espino P, López M (2006) Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol Measur 27(11):1091–1106. https://doi.org/10.1088/0967-3334/27/11/004

Article  CAS  Google Scholar 

Fiscon G, Weitschek E, De Cola MC, Felici G, Bertolazzi P (2018) An integrated approach based on EEG signals processing combined with supervised methods to classify Alzheimer’s disease patients. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 2750–2752. 10.1109/BIBM.2018.8621473

Fouad IA, Labib FE-ZM (2023) Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network. Biomed Signal Process Control 86:105266. https://doi.org/10.1016/j.bspc.2023.105266

Article  Google Scholar 

Geng D, Wang C, Fu Z, Zhang Y, Yang K, An H (2022) Sleep eeg-based approach to detect mild cognitive impairment. Front Aging Neurosci 14:865558. https://doi.org/10.3389/fnagi.2022.865558

Article  PubMed  PubMed Central  Google Scholar 

Ieracitano C, Mammone N, Hussain A, Morabito FC (2020) A novel multi-modal machine learning-based approach for automatic classification of EEG recordings in dementia. Neural Netw 123:176–190. https://doi.org/10.1016/j.neunet.2019.12.006

Article  PubMed  Google Scholar 

Kachare PH, Sangle SB, Puri DV, Khubrani MM, Al-Shourbaji I (2024) Steadynet: spatiotemporal eeg analysis for dementia detection using convolutional neural network. Cognit Neurodyn, 1–14

Kachare P, Puri D, Sangle SB, Al-Shourbaji I, Jabbari A, Kirner R, Alameen A, Migdady H, Abualigah L (2024) Lcadnet: a novel light cnn architecture for eeg-based alzheimer disease detection. Phys Eng Sci Med, 1–14

Kamble A, Ghare PH, Kumar V (2023) Optimized rational dilation wavelet transform for automatic imagined speech recognition. IEEE Trans Instr Measur 72:1–10. https://doi.org/10.1109/TIM.2023.3241973

Article  Google Scholar 

Khare SK, Nishad A, Upadhyay A, Bajaj V (2020) Classification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural network. Electron Lett 56(25):1359–1361. https://doi.org/10.1049/el.2020.2380

Article  Google Scholar 

Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V (2005) Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 26(2):165–171. https://doi.org/10.1016/j.neurobiolaging.2004.03.008

Article  CAS  PubMed  Google Scholar 

Lo Giudice P, Mammone N, Morabito F, Pizzimenti R, Ursino D, Virgili L (2019) Leveraging network analysis to support experts in their analyses of subjects with MCI and AD. Med Biolog Eng Comput 57:1961–1983. https://doi.org/10.1007/s11517-019-02004-y

Article  Google Scholar 

Lopes M, Cassani R, Falk T (2023) Using cnn saliency maps and eeg modulation spectra for improved and more interpretable machine learning-based Alzheimer’s disease diagnosis. Comput Intell Neurosci 2023:1–17. https://doi.org/10.1155/2023/3198066

Article  Google Scholar 

McBride J, Zhao X, Munro N, Smith C, Jicha G, Hively L, Broster L, Schmitt F, Kryscio R, Jiang Y (2014) Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Computer Methods Programs Biomed 2014(114):153–163. https://doi.org/10.1016/j.cmpb.2014.01.019

Article  Google Scholar 

Miltiadous A, Tzimourta K, Giannakeas N, Tsipouras M, Afrantou T, Ioannidis P, Tzallas A (2021) Alzheimer’s disease and frontotemporal dementia: a robust classification method of eeg signals and a comparison of validation methods. Diagnostics 11:1437. https://doi.org/10.3390/diagnostics11081437

Article  PubMed  PubMed Central  Google Scholar 

Miltiadous Andreas, Tzimourta Katerina, Afrantou Theodora, Ioannidis Panagiotis, Grigoriadis Nikolaos, Tsalikakis P (2023) A dataset of scalp eeg recordings of Alzheimer’s disease, frontotemporal dementia and healthy subjects from routine EEG. Data 8:95. https://doi.org/10.3390/data8060095

Article  Google Scholar 

Nagare MB, Patil BD, Holambe RS (2020) On the design of biorthogonal halfband filterbanks with almost tight rational coefficients. IEEE Trans Circuits SystII: Express Briefs 67(4):790–794. https://doi.org/10.1109/TCSII.2019.2922745

Article  Google Scholar 

Oltu B, Akşahin MF, Kibaroǧlu S (2021) A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection. Biomed Signal Process Control 63:102223. https://doi.org/10.1016/j.bspc.2020.102223

Article  Google Scholar 

Pirrone D, Weitschek E, Di Paolo P, De Salvo S, De Cola MC (2022) EEG signal processing and supervised machine learning to early diagnose Alzheimer’s disease. Appl Sci 12(11):5413. https://doi.org/10.3390/app12115413

Article  CAS  Google Scholar 

Puri DV, Nalbalwar SL, Nandgaonkar AB, Gawande JP, Wagh A (2023) Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks. Biomed Signal Process Control 81:104439. https://doi.org/10.1016/j.bspc.2022.104439

Article  Google Scholar 

Puri DV, Nalbalwar SL, Ingle PP (2023) Eeg-based systematic explainable Alzheimer’s disease and mild cognitive impairment identification using novel rational dyadic biorthogonal wavelet filter banks. Circuits, Syst Signal Process 83:1–31

Google Scholar 

Puri DV, Gawande JP, Rajput JL, Nalbalwar SL (2023) A novel optimal wavelet filter banks for automated diagnosis of Alzheimer’s disease and mild cognitive impairment using electroencephalogram signals. Decision Analy J 9:100336. https://doi.org/10.1016/j.dajour.2023.100336

Article 

留言 (0)

沒有登入
gif