Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems arXiv preprint arXiv:1603.04467.
Appel T, Gerjets P, Hoffman S, Moeller K, Ninaus M, Scharinger C, Sevcenko N, Wortha F, Kasneci E (2023) Cross-task and cross-participant classification of cognitive load in an emergency simulation game. IEEE Trans Affect Comput 14(2):1558–1571
Appriou A, Cichocki A, and Lotte F (2018) Towards robust neuroadaptive hci: exploring modern machine learning methods to estimate mental workload from EEG signals. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems 1–6.
Arico P, Borghini G, Di Flumeri G, Sciaraffa N, Colosimo A, Babiloni F (2017) Passive BCI in operational environments: insights, recent advances, and future trends. IEEE Trans Biomed Eng 64(7):1431–1436
Bashivan P, Rish I, Yeasin M, and Codella N (2015) Learning representations from EEG with deep recurrent-convolutional neural networks arXiv preprint arXiv:1511.06448.
Bhosale S, Chakraborty R, Kopparapu SK (2022) Calibration free meta learning based approach for subject-independent EEG emotion recognition. Biomed Signal Process Control 72:103289
Cai Q, Cui G, Wang H (2022) EEG-based emotion recognition using multiple kernel learning. Mach Intell Res 19(5):472–484
Chen X, Teng X, Chen H, Pan Y, Geyer P (2024) Toward reliable signals decoding for electroencephalogram: a benchmark study to EEGNeX. Biomed Signal Process Control 87:105475
Das K, Singh V, Pachori R (2024) Introduction to EEG signal recording and processing. https://doi.org/10.1201/9781003479970-1.
Das K, Pachori R (2021) Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 67:102525
Das K, Pachori R (2023) Electroencephalogram-based motor imagery brain-computer interface using multivariate iterative filtering and spatial filtering. IEEE Trans Cogn Dev Syst 15(3):1408–1418
Das K, Pachori R (2024) multivariate iterative filtering-based SSVEP detection in mobile environment for brain-computer interface application. IEEE Sensors Letters 8(4):1–4
Debie E, Fernandez Rojas R, Fidock J, Barlow M, Kasmarik K, Anavatti S, Garratt M, Abbass HA (2021) Multimodal fusion for objective assessment of cognitive workload: a review. IEEE Trans Cybern 51(3):1542–1555
Della’ Agnola F, Jao P, Arza A, Chavarriaga R, Millán JDR, Floreano D, Atienza D (2022) Machine-learning based monitoring of cognitive workload in rescue missions with drones. IEEE J Biomed Health Inform 26(9):4751–4762
Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette G, Marchand M, Lempitsky V (2016) Domain adversarial training of neural networks. J Mach Learn Res 17:2096–2030
Hefron R, Borghetti B, Christensen J, Kabban C (2017) Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation. Pattern Recogn Lett 94:96–104
Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition Salt Lake City UT USA 7132–7141.
Jiao Z, Gao X, Wang Y, Li J, Xu H (2018) Deep convolutional neural networks for mental load classification based on EEG data. Pattern Recogn 76:582–595
Kang J, Kavuri S, Lee M (2022) ICA-evolution based data augmentation with ensemble deep neural networks using time and frequency kernels for emotion recognition from EEG-Data. IEEE Trans Affect Comput 13(2):616–627
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization arXiv preprint arXiv:1412.6980.
Lawhern V, Solon A, Waytowich N, Gordon S, Hung C, Lance B (2018) EEGnet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15:056013
Li Y, Zheng W, Zong Y, Cui Z, Zhang T, Zhou X (2021) A bi-hemisphere domain adversarial neural network model for EEG emotion recognition. IEEE Trans Affect Comput 12(2):494–504
Li Z, Zhu E, Jin M, Fan C, He H, Cai T, Li J (2022) Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition. IEEE J Biomed Health Inform 26(12):5964–5973
Li S, Liu C, Xie B, Su L, Ding Z, Huang G (2019) Joint adversarial domain adaptation. Proceedings of the 27th ACM international conference on multimedia New York NY USA 729–737.
Liu Y, Lan Z, Cui J, Sourina O, Muller W (2020) Inter-subject transfer learning for EEG-based mental fatigue recognition. Adv Eng Inform 46:101157
Long M, Wang J, Ding G, Sun J, Yu P (2013) Transfer feature learning with joint distribution adaptation. Proceedings of the 2013 IEEE international conference on computer vision IEEE.
Long M, Wang J, Ding G, Sun J, Yu P (2014) Transfer joint matching for unsupervised domain adaptation. Proceedings of the IEEE conference on computer vision and pattern recognition 1410–1417
Long M, Cao Z, Wang J, Jordan MI (2018) Conditional adversarial domain adaptation. Proceedings of the 2017 of neural information processing systems 1640–1650.
Mishra B, Tarai S, Ratre V, Bit A (2023) Processing of attentional and emotional stimuli depends on retrospective response of foot pressure: conceptualizing neuron-cognitive distribution in human brain. Comput Biol Med 164:107186
Ni Z, Xu J, Wu Y, Li M, Xu G, Xu B (2022) Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training. IEEE Trans Neural Syst Rehabil Eng 30:369–379
Pan S, Tsang I, Kwok J, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Networks 22:199–210
Prasad R, Tarai S, Bit A (2022) Investigation of frequency components embedded in EEG recordings underlying neuronal mechanism of cognitive control and attentional functions. Cogn Neurodynamics 1–24
Roy RN, Hinss M, Darmet L, Ladouce S, Jahanpour E, Somon B, Xu X, Drougard N, Dehais F, Lotte F (2022) Retrospective on the first passive brain-computer interface competition on cross-session workload. Estim Front Neuroergonomics 3:838342
Saito K, Watanabe K, Ushiku Y, Harada T (2018) Maximum classifier discrepancy for unsupervised domain adaptation. Proceedings of 2018 IEEE/CVF conference on computer vision and pattern recognition Salt Lake City UT USA 3723–3732.
Schirrmeister R, Springenberg J, Fiederer L, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38:5391–5420
Article PubMed PubMed Central Google Scholar
Song Y, Zheng Q, Liu B, Gao X (2023) EEG conformer: convolutional transformer for EEG decoding and visualization. IEEE Trans Neural Syst Rehabil Eng 31:710–719
Tarai S, Qurratul QA, Ratre V, Bit A (2022) Neurocognitive functions of prosocial and unsocial incongruency information during language comprehension: evidence from time-frequency analysis of EEG signals. Med Biol Eng Compu 60(4):1033–1053
Tripathy RK, Pachori R (Eds.) (2024) Artificial intelligence enabled signal processing based models for neural information processing (1st ed.). CRC Press. https://doi.org/10.1201/9781003479970.
Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579–2605
Wang Z, Hope RM, Wang Z, Ji Q, Gray WD (2012) Cross-subject workload classification with a hierarchical Bayes model. Neuroimage 59(1):64–69
Wang J, Chen Y, Hao S, Feng W, Shen Z (2017) Balanced distribution adaptation for transfer learning. IEEE International Conference on Data Mining IEEE.
Wei C, Lin Y, Wang Y, Lin C, Jung T (2018) A subject transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection. Neuroimage 174:407–419
Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. Proc Eur Conf Comput Vis Amsterdam Netherlands 9911:499–515
Wickens CD (2002) Multiple resources and performance prediction. Theor Issues Ergon Sci 3(2):159–177
Woolson RF (2007) Wilcoxon signed-rank test Wiley Encyclopedia of Clinical trials John Wiley and Sons Singapore 1–3.
Yan Y, Ma L, Liu Y, Ivanov K, Wang J, Xiong J, Li A, He Y, Wang L (2023) Topological EEG-based functional connectivity analysis for mental workload state recognition. IEEE Trans Instrum Meas 72:1–14
Zanetti R, Arza A, Aminifar A, Atienza D (2021) Real-time EEG-based cognitive workload monitoring on wearable devices. IEEE Trans Biomed Eng 69(1):265–277
Zhang J, Wang Y, Li S (2017) Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques. Cogn Technol Work 19(4):587–605
Zhang P, Wang X, Chen J, You W, Zhang W (2019) Spectral and temporal feature learning with two-stream neural networks for mental workload assessment. IEEE Trans Neural Syst Rehabil Eng 27(6):1149–1159
Zhao H, Zheng Q, Ma K, Li H, Zheng Y (2021) Deep representation-based domain adaptation for nonstationary EEG Classification. IEEE Trans Neural Netw Learn Syst 32:535–545
Zhou Y, Huang S, Xu Z, Wang P, Wu X, Zhang D (2022a) Cognitive workload recognition using EEG signals and machine learning: A review. IEEE Trans Cogn Dev Syst 14(3):799–818
Zhou Y, Xu Z, Niu Y, Wang P, Wen X, Wu X, Zhang D (2022b) Cross-task cognitive workload recognition based on EEG and domain adaptation. IEEE Trans Neural Syst Rehabil Eng 30:50–60
Zhou Y, Wang P, Gong P, Wei F, Wen X, Wu X, Zhang D (2023) Cross-subject cognitive wor
留言 (0)