Daducci A, Gerhard S, Griffa A, Lemkaddem A, Cammoun L, Gigandet X, Meuli R, Hagmann P, Thiran J-P (2012) The connectome mapper: an open-source processing pipeline to map connectomes with MRI. PLoS One 7(12):e48121. https://doi.org/10.1371/journal.pone.0048121
Article CAS PubMed PubMed Central Google Scholar
Fellner M, Varga B, Grolmusz V (2019) The frequent subgraphs of the connectome of the human brain. Cognitive Neurodyn 13(5):453–460. https://doi.org/10.1007/s11571-019-09535-y
Fellner M, Varga B, Grolmusz V (2020a) The frequent complete subgraphs in the human connectome. PLoS One 15(8):e0236883. https://doi.org/10.1371/journal.pone.0236883
Article CAS PubMed PubMed Central Google Scholar
Fellner M, Varga B, Grolmusz V (2020b) The frequent network neighborhood mapping of the human hippocampus shows much more frequent neighbor sets in males than in females. PLoS One 15(1):e0227910. https://doi.org/10.1371/journal.pone.0227910
Article CAS PubMed PubMed Central Google Scholar
Fellner M, Varga B, Grolmusz V (2020c) Good neighbors, bad neighbors: the frequent network neighborhood mapping of the hippocampus enlightens several structural factors of the human intelligence on a 414-subject cohort. Sci Rep 10:11967. https://doi.org/10.1038/s41598-020-68914-2
Article CAS PubMed PubMed Central Google Scholar
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. https://doi.org/10.1371/journal.pbio.0060159
Article CAS PubMed PubMed Central Google Scholar
Hegedus D, Grolmusz V (2023) Robust circuitry-based scores of structural importance of human brain areas. PLoS One. https://doi.org/10.1371/journal.pone.0292613
Article PubMed PubMed Central Google Scholar
Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1–2):81–93. https://doi.org/10.1093/biomet/30.1-2.81
Kerepesi C, Szalkai B, Varga B, Grolmusz V (2016) How to direct the edges of the connectomes: Dynamics of the consensus connectomes and the development of the connections in the human brain. PLoS One 11(6):e0158680. https://doi.org/10.1371/journal.pone.0158680
Article CAS PubMed PubMed Central Google Scholar
Kerepesi C, Szalkai B, Varga B, Grolmusz V (2017) The braingraph. org database of high resolution structural connectomes and the brain graph tools. Cognitive Neurodyn 11(5):483–486
Kerepesi Csaba, Szalkai Balázs, Varga Bálint, Grolmusz Vince (2018a) Comparative connectomics: mapping the inter-individual variability of connections within the regions of the human brain. Neurosci Lett 662(1):17–21. https://doi.org/10.1016/j.neulet.2017.10.003
Article CAS PubMed Google Scholar
Kerepesi C, Varga B, Szalkai B, Grolmusz V (2018b) The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain. Neurosci Lett 673:51–55. https://doi.org/10.1016/j.neulet.2018.02.052
Article CAS PubMed Google Scholar
Keresztes L, Szögi E, Varga B, Grolmusz V (2022a) Introducing and applying Newtonian blurring: an augmented dataset of 126,000 human connectomes at braingraph. org. Sci Rep. https://doi.org/10.1038/s41598-022-06697-4
Article PubMed PubMed Central Google Scholar
LaMontagne PJ, Benzinger T.L., Morris JC, Keefe S, Hornbeck R, Xiong C, Grant E, Hassenstab J, Moulder K, Vlassenko AG and Raichle ME (2019) OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease. medRxiv https://doi.org/10.1101/2019.12.13.19014902
Laszlo Keresztes, Evelin Szogi, Balint Varga, Vince Grolmusz (2022b) Discovering sex and age implicator edges in the human connectome. Neurosci Lett 791:136913. https://doi.org/10.1016/j.neulet.2022.136913
McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The human connectome project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245. https://doi.org/10.1016/j.neuroimage.2013.05.074
Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth & Analg 126:1763–1768. https://doi.org/10.1213/ane.0000000000002864
Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101. https://doi.org/10.2307/1412159
Szalkai B, Grolmusz V (2018) Human sexual dimorphism of the relative cerebral area volumes in the data of the human connectome project. Eur J Anat 22(3):221–225
Szalkai B, Kerepesi C, Varga B, Grolmusz V (2015a) The Budapest reference connectome server v2. 0. Neurosci Lett 595:60–62
Article CAS PubMed Google Scholar
Szalkai B, Kerepesi C, Varga B, Grolmusz V (2017a) Parameterizable consensus connectomes from the human connectome project: the Budapest reference connectome server v30. Cognitive Neurodyn 11(1):113–116. https://doi.org/10.1007/s11571-016-9407-z
Szalkai B, Kerepesi C, Varga B, Grolmusz V (2019) High-resolution directed human connectomes and the consensus connectome dynamics. PLoS One 14(4):e0215473. https://doi.org/10.1371/journal.pone.0215473
Article CAS PubMed PubMed Central Google Scholar
Szalkai B, Varga B, Grolmusz V (2015) Graph theoretical analysis reveals: women’s brains are better connected than men’s. PLoS One 10(7):e0130045. https://doi.org/10.1371/journal.pone.0130045
Article CAS PubMed PubMed Central Google Scholar
Szalkai B, Varga B, Grolmusz V (2017b) The robustness and the doubly-preferential attachment simulation of the consensus connectome dynamics of the human brain. Sci Rep 7:16118. https://doi.org/10.1038/s41598-017-16326-0
Article CAS PubMed PubMed Central Google Scholar
Szalkai B, Varga B, Grolmusz V (2018) Brain size bias-compensated graph-theoretical parameters are also better in women’s connectomes. Brain Imaging Behav 12(3):663–673. https://doi.org/10.1007/s11682-017-9720-0
Szalkai B, Varga B, Grolmusz V (2021) The graph of our mind. Brain Sci 11(3):342. https://doi.org/10.3390/brainsci11030342
Article PubMed PubMed Central Google Scholar
Varga B, Grolmusz V (2021) The braingraph. org database with more than 1000 robust human structural connectomes in five resolutions. Cognitive Neurodyn. https://doi.org/10.1007/s11571-021-09670-5
留言 (0)