Protective effects of polydatin amphiphilic chitosan nanocarriers against an aluminum chloride-induced model of Alzheimer’s disease in rats: relevance to its anti-inflammatory and antioxidant effects

Abdul-Hamid M, Galaly SR, Mohamed HM, Mostafa F, Abdel-Moneim A (2023) Polydatin nanoparticles attenuate oxidative stress and histopathological changes in streptozotocin model of diabetic nephropathy: targeting Nrf2/HO-1/NF-κβ signaling pathways. Beni-Suef Univ J Basic Appl Sci 12:99

Article  Google Scholar 

Aebi H (1980) Enzymes 1: oxidoreductases, transferases. Methods Enzym Anal 3:273–282

Google Scholar 

Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E, Kashanian S (2021) Enhanced synergistic-antioxidant activity of melatonin and tretinoin by co-encapsulation into amphiphilic chitosan nanocarriers: during mice in vitro matured oocyte/morula-compact stage embryo culture model. Reprod Sci 28:3361–3379

Article  CAS  PubMed  Google Scholar 

Agostinho P, A Cunha R, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766-2778

Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K (2018) Neuroinflammatory cytokines induce amyloid beta neurotoxicity through modulating amyloid precursor protein levels/metabolism. Biomed Res Int 2018:3087475

Article  PubMed  PubMed Central  Google Scholar 

Asl SS, Amiri I, Samzadeh-Kermani A, Abbasalipourkabir R, Gholamigeravand B, Shahidi S (2021) Chitosan-coated selenium nanoparticles enhance the efficiency of stem cells in the neuroprotection of streptozotocin-induced neurotoxicity in male rats. Int J Biochem Cell Biol 141:106089

Article  Google Scholar 

Aumont E, Bussy A, Bedard MA, Bezgin G, Therriault J, Savard M, Fernandez Arias J, Sziklas V, Vitali P, Poltronetti NM, Pallen V, Thomas E, Gauthier S, Kobayashi E, Rahmouni N, Stevenson J, Tissot C, Chakravarty MM, Rosa-Neto P (2023) Hippocampal subfield associations with memory depend on stimulus modality and retrieval mode. Brain Commun 5: fcad309

Bagheri Bavandpouri FS, Azizi A, Abbaszadeh F, Kiani A, Farzaei MH, Mohammadi-Noori E, Fakhri S, Echeverría J (2024b) Polydatin attenuated neuropathic pain and motor dysfunction following spinal cord injury in rats by employing its anti-inflammatory and antioxidant effects. Front Pharmacol 15:1452989

Article  PubMed  PubMed Central  Google Scholar 

Bagheri Bavandpouri FS, Azizi A, Abbaszadeh F, Kiani A, Farzaei MH, Mohammadi-Noori E, Fakhri S, Echeverría J (2024a) Polydatin attenuated neuropathic pain and motor dysfunction following spinal cord injury in rats by employing its anti-inflammatory and antioxidant effects. Front Pharmacol 15

Barnes J, Dickerson BC, Frost C, Jiskoot LC, Wolk D, van der Flier WM (2015) Alzheimer’s disease first symptoms are age dependent: evidence from the NACC dataset. Alzheimer’s & Dementia 11:1349–1357

Article  Google Scholar 

Basta-Kaim A, Ślusarczyk J, Szczepanowicz K, Warszyński P, Leśkiewicz M, Regulska M, Trojan E, Lasoń W (2019) Protective effects of polydatin in free and nanocapsulated form on changes caused by lipopolysaccharide in hippocampal organotypic cultures. Pharmacol Rep 71:603–613

Article  CAS  PubMed  Google Scholar 

Bohley M, Haunberger A, Goepferich AM (2019) Intracellular availability of poorly soluble drugs from lipid nanocapsules. Eur J Pharm Biopharm 139:23–32

Article  CAS  PubMed  Google Scholar 

Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Petre BA, Hritcu L (2020) Cotinine and 6-hydroxy-l-nicotine reverses memory deficits and reduces oxidative stress in Aβ(25–35)-induced rat model of Alzheimer’s disease. Antioxidants (Basel) 9

Bonferoni M, Sandri G, Dellera E, Rossi S, Ferrari F, Mori M, Caramella C (2014) Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid. Eur J Pharm Biopharm 87:101–106

Article  CAS  PubMed  Google Scholar 

Chiu Y-L, Ho Y-C, Chen Y-M, Peng S-F, Ke C-J, Chen K-J, Mi F-L, Sung H-W (2010) The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J Control Release 146:152–159

Article  CAS  PubMed  Google Scholar 

Contador I, Buch-Vicente B, Del Ser T, Llamas-Velasco S, Villarejo-Galende A, Benito-León J, Bermejo-Pareja F (2024) Charting Alzheimer’s disease and dementia: epidemiological insights, risk factors and prevention pathways. J Clin Med 13

de Oliveira PR, Hoffmann S, Pereira S, Goycoolea FM, Schmitt CC, Neumann MG (2018) Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur J Pharm Biopharm 131:203–210

Article  Google Scholar 

De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

Article  PubMed  Google Scholar 

Dhas N, Mehta T (2021) Intranasal delivery of chitosan decorated PLGA core/shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer’s disease. J Drug Deliv Sci Technol 61:102242

Article  CAS  Google Scholar 

Diethorn EJ, Gould E (2023) Development of the hippocampal CA2 region and the emergence of social recognition. Dev Neurobiol 83:143–156

Article  PubMed  PubMed Central  Google Scholar 

Du Q-H, Peng C, Zhang H (2013) Polydatin: a review of pharmacology and pharmacokinetics. Pharm Biol 51:1347–1354

Article  CAS  PubMed  Google Scholar 

Dudek SM, Alexander GM, Farris S (2016) Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci 17:89–102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

Article  CAS  PubMed  Google Scholar 

Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85:2813–2823

Article  CAS  PubMed  Google Scholar 

Fakhri S, Sabouri S, Kiani A, Farzaei MH, Rashidi K, Mohammadi-Farani A, Mohammadi-Noori E, Abbaszadeh F (2022) Intrathecal administration of naringenin improves motor dysfunction and neuropathic pain following compression spinal cord injury in rats: relevance to its antioxidant and anti-inflammatory activities. Korean J Pain 35:291–302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fakhri S, Gravandi MM, Abdian S, Akkol EK, Farzaei MH, Sobarzo-Sánchez E (2021) The neuroprotective role of polydatin: neuropharmacological mechanisms, molecular targets, therapeutic potentials, and clinical perspective. Molecules 26

Farlow M, Anand R, Messina J Jr, Hartman R, Veach J (2000) A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur Neurol 44:236–241

Article  CAS  PubMed  Google Scholar 

Firdaus Z, Kumar D, Singh SK, Singh TD (2022) Centella asiatica alleviates AlCl3-induced cognitive impairment, oxidative stress, and neurodegeneration by modulating cholinergic activity and oxidative burden in rat brain. Biol Trace Elem Res 200:5115–5126

Article  CAS  PubMed  Google Scholar 

Fujimoto M, Takagi Y, Aoki T, Hayase M, Marumo T, Gomi M, Nishimura M, Kataoka H, Hashimoto N, Nozaki K (2008) Tissue inhibitor of metalloproteinases protect blood-brain barrier disruption in focal cerebral ischemia. J Cereb Blood Flow Metab 28:1674–1685

Article  CAS  PubMed  Google Scholar 

Gentile E, Liuzzi GM (2017) Marine pharmacology: therapeutic targeting of matrix metalloproteinases in neuroinflammation. Drug Discovery Today 22:299–313

Article  CAS  PubMed  Google Scholar 

Granger DL, Taintor RR, Boockvar KS (1995) Determination of nitrate and nitrite in biological samples using bacterial nitrate reductase coupled with the Griess reaction. Methods 7:78–83

Article  CAS  Google Scholar 

Granger DL, Taintor RR, Boockvar KS, Hibbs Jr JB (1996) Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods in enzymology. Elsevier, pp. 142–151

Guglielmotto M, Giliberto L, Tamagno E, Tabaton M (2010) Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors. Front Aging Neurosci 2:1276

Google Scholar 

Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, Lanman L, Chadha AS, van der Flier WM (2023) Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement 19:658–670

Article  PubMed  Google Scholar 

Hamdan AME, Alharthi FHJ, Alanazi AH, El-Emam SZ, Zaghlool SS, Metwally K, Albalawi SA, Abdu YS, Mansour RE-S, Salem HA (2022) Neuroprotective effects of phytochemicals against aluminum chloride-induced Alzheimer’s disease through ApoE4/LRP1, wnt3/β-catenin/gsk3β, and TLR4/NLRP3 pathways with physical and mental activities in a rat model. Pharmaceuticals 15:1008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, Burns A, Dening T, Findlay D, Holmes C (2012) Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med 366:893–903

Article  CAS  PubMed  Google Scholar 

Hu F-Q, Zhao M-D, Yuan H, You J, Du Y-Z, Zeng S (2006) A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: properties and in vitro transfection studies. Int J Pharm 315:158–166

Article  CAS  PubMed  Google Scholar 

Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomedical Reports 4:519–522

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif