Zhang C, Xu C, Gao X, Yao Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics. 2022;12:2115–32. https://doi.org/10.7150/thno.69424.
Article CAS PubMed PubMed Central Google Scholar
Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2020;21:37–50. https://doi.org/10.1038/s41568-020-00308-y.
Article CAS PubMed Google Scholar
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00343.
Article PubMed PubMed Central Google Scholar
Xue Y, Gao S, Gou J, Yin T, He H, Wang Y, Zhang Y, Tang X, Wu R. Platinum-based chemotherapy in combination with PD-1/PD-L1 inhibitors: preclinical and clinical studies and mechanism of action. Expert Opin Drug Deliv. 2020;18:187–203. https://doi.org/10.1080/17425247.2021.1825376.
Article CAS PubMed Google Scholar
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam-Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkulak TH, Osayawek OJ. Advancements in tantalum-based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv. 2024;14:33681–740. https://doi.org/10.1039/D4RA05732E.
Article CAS PubMed PubMed Central Google Scholar
Onivefu AP, Efunnuga A, Efunnuga A, et al. Photoresist performance: an exploration of synthesis, surface modification techniques, properties tailoring, and challenges navigation in copper/copper oxide nanoparticle applications. Biomed Mater Devices. 2024;1:1–31. https://doi.org/10.1007/s44174-024-00167-3.
Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, et al. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv. 2024;14:20992–1034. https://doi.org/10.1039/D4RA02452D.
Article CAS PubMed PubMed Central Google Scholar
Okonkwo TP, Amienghemhen OD, Nkwor AN, et al. Exploring the versatility of copper-based nanoparticles as contrast agents in various imaging modalities. Nano-Struct Nano-Objects. 2024;40: 101370. https://doi.org/10.1016/j.nanoso.2024.101370.
Omoruyi IC, Omoruyi JI, Aghedo ON, Archibong UD, et al. Application of magnetic iron oxide nanostructures in drug delivery: a compact review. In: TMS 2023 152nd annual meeting and exhibition supplemental proceedings. Cham: Springer; 2023. p. 165–74. https://doi.org/10.1007/978-3-031-22524-6_22.
Khan M, Vikramdeo K, Sudan S, Singh S, Wilhite A, Dasgupta S, Rocconi R, Singh A. Platinum-resistant ovarian cancer: from drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol. 2021. https://doi.org/10.1016/j.semcancer.2021.08.005.
Article PubMed PubMed Central Google Scholar
Mcmullen M, Karakasis K, Madariaga A, Oza A. Overcoming platinum and PARP-inhibitor resistance in ovarian cancer. Cancers. 2020. https://doi.org/10.3390/cancers12061607.
Article PubMed PubMed Central Google Scholar
Waks A, Cohen O, Kochupurakkal B, Kim D, Dunn C, Buendia J, Wander S, Helvie K, Lloyd M, Marini L, Hughes M, Freeman S, Ivy S, Geradts J, Isakoff S, LoRusso P, Adalsteinsson V, Tolaney S, Matulonis U, Krop I, D’Andrea A, Winer E, Lin N, Shapiro G, Wagle N. Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. Ann Oncol Off J Eur Soc Med Oncol. 2020. https://doi.org/10.1016/j.annonc.2020.02.008.
D’addario G, Pintilie M, Leighl N, Feld R, Cerny T, Shepherd F. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(13):2926–36. https://doi.org/10.1200/JCO.2005.03.045.
Grønberg B, Sundstrøm S, Kaasa S, Bremnes R, Fløtten O, Amundsen T, Hjelde H, Plessen C, Jordhøy M. Influence of comorbidity on survival, toxicity and health-related quality of life in patients with advanced non-small-cell lung cancer receiving platinum-doublet chemotherapy. Eur J Cancer. 2010;46(12):2225–34. https://doi.org/10.1016/j.ejca.2010.04.009.
Article CAS PubMed Google Scholar
Lequesne J, Joly F, Péron J, Ray-Coquard I, Hardy-Bessard A, Selle F, Berton D, Follana P, Fabbro M, Lortholary A, Pujade-Lauraine E, Lefèvre-Arbogast S, Coquan E. Evaluation of scores to reflect toxicity impact on quality of life of patients with platinum-resistant ovarian cancer: AURELIA Substudy. J Natl Compr Cancer Netw. 2023;21(5):473-479.e4. https://doi.org/10.6004/jnccn.2022.7101.
Duan Z, Cai G, Li J, Chen X. Cisplatin-induced renal toxicity in elderly people. Ther Adv Med Oncol. 2020. https://doi.org/10.1177/1758835920923430.
Article PubMed PubMed Central Google Scholar
Zazuli Z, Vijverberg S, Slob E, Liu G, Carleton B, Veltman J, Baas P, Masereeuw R, Zee A. Genetic variations and cisplatin nephrotoxicity: a systematic review. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.01111.
Article PubMed PubMed Central Google Scholar
Alderden R, Mellor H, Modok S, Hambley T, Callaghan R. Cytotoxic efficacy of an anthraquinone linked platinum anticancer drug. Biochem Pharmacol. 2006;71(8):1136–45. https://doi.org/10.1016/J.BCP.2005.12.039.
Article CAS PubMed Google Scholar
Desoize B, Madoulet C. Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol/Hematol. 2002;42(3):317–25. https://doi.org/10.1016/S1040-8428(01)00219-0.
Oun R, Moussa Y, Wheate N. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018;47(19):6645–53. https://doi.org/10.1039/c8dt00838h.
Article CAS PubMed Google Scholar
Leal F, García-Perdomo H. Effectiveness of platinum-based chemotherapy in patients with metastatic prostate cancer: systematic review and meta-analysis. Clin Genitourin Cancer. 2019;17(3):e627–44. https://doi.org/10.1016/J.CLGC.2019.03.008.
Xie P, Wang Y, Wei D, Zhang L, Zhang B, Xiao H, Song H, Mao X. Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance. J Mater Chem B. 2021. https://doi.org/10.1039/d1tb00753j.
Garcia-Peiro J, Bonet-Aleta J, Santamaría J, Hueso J. Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chem Soc Rev. 2022. https://doi.org/10.1039/d2cs00518b.
Cheng Q, Liu Y. Multifunctional platinum-based nanoparticles for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:2. https://doi.org/10.1002/wnan.1410.
Cheng H, Wu T, Chien C, Tu H, Cha T, Lin S. Corrosion-activated chemotherapeutic function of nanoparticulate platinum as a cisplatin resistance-overcoming prodrug with limited autophagy induction. Small. 2016;12(44):6124–33. https://doi.org/10.1002/smll.201602374.
Article CAS PubMed Google Scholar
Oberoi H, Nukolova N, Kabanov A, Bronich T. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev. 2013;65(13–14):1667–85. https://doi.org/10.1016/j.addr.2013.09.014.
Article CAS PubMed PubMed Central Google Scholar
Marques A, Costa P, Velho S, Velho S, Amaral M. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J Control Release Off J Control Release Soc. 2020. https://doi.org/10.1016/j.jconrel.2020.01.035.
Bao Y, Hua X, Chen X, Wu F. Platinum-doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: multi-organelle-targeted photothermal therapy. Biomaterials. 2018;183:30–42. https://doi.org/10.1016/j.biomaterials.2018.08.031.
Article CAS PubMed Google Scholar
Zhi S, Zhang X, Zhang J, Wang X, Bi S. Functional nucleic acids-engineered bio-barcode nanoplatforms for targeted synergistic therapy of multidrug-resistant cancer. ACS Nano. 2023. https://doi.org/10.1021/acsnano.3c02009.
留言 (0)