Gulbay G, Secme M, Ilhan H. Exploring the potential of thymoquinone-stabilized selenium nanoparticles: in HEC1B endometrial cancer cells revealing enhanced anticancer efficacy. ACS Omega. 2023;8(42):39822–9. https://doi.org/10.1021/acsomega.3c06028.
Article CAS PubMed PubMed Central Google Scholar
Ilhan H. Nanoarchitectonics of the effects of curcumin carbon dot-decorated chitosan nanoparticles on proliferation and apoptosis-related gene expressions in HepG2 hepatocellular carcinoma cells. ACS Omega. 2023;8(37):33554–63. https://doi.org/10.1021/acsomega.3c03405.
Article CAS PubMed PubMed Central Google Scholar
Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G. Immune and inflammatory cells in thyroid cancer microenvironment. Int J Mol Sci. 2019;20(18):4413.
Article CAS PubMed PubMed Central Google Scholar
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016.
CAS PubMed PubMed Central Google Scholar
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.
Article CAS PubMed Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Article CAS PubMed Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054–67.
Article CAS PubMed PubMed Central Google Scholar
Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao X-H, Refetoff S, Nikiforov YE, Fagin JA. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Can Res. 2005;65(10):4238–45.
Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini A, Torregrossa L. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13(11):644–60.
Article CAS PubMed Google Scholar
Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020;19(1):39–56.
Article CAS PubMed Google Scholar
Luo H, Xia X, Kim GD, Liu Y, Xue Z, Zhang L, Shu Y, Yang T, Chen Y, Zhang S. Characterizing dedifferentiation of thyroid cancer by integrated analysis. Sci Adv. 2021;7(31):eabf3657.
Article CAS PubMed PubMed Central Google Scholar
Alalawy AI, El Rabey HA, Almutairi FM, Tayel AA, Al-Duais MA, Zidan NS, Sakran MI. Effectual anticancer potentiality of loaded bee venom onto fungal chitosan nanoparticles. Int J Polym Sci. 2020;2020:2785304.
Pak, S.C.: Health benefits and uses in medicine of bee venom. In: Bee products-chemical and biological properties, 287–306 (2017)
Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Biosci Rep. 2007;27(4–5):189–223.
Article CAS PubMed Google Scholar
Abd El-Gawad A, Kenawy MA, El-Messery TM, Hassan ME, El-Nekeety AA, Abdel-Wahhab MA. Fabrication and characterization of bee venom-loaded nanoliposomes: enhanced anticancer activity against different human cancer cell lines via the modulation of apoptosis-related genes. J Drug Deliv Sci Technol. 2023;84:104545.
Abd El-Wahab SD, Eita LH. The effectiveness of live bee sting acupuncture on depression. IOSR J Nurs Health Sci. 2015;4:19–27.
Fratellone PM, Tsimis F, Fratellone G. Apitherapy products for medicinal use. J Altern Complement Med. 2016;22(12):1020–2.
Hegazi A. Role of cytokines in bee venom therapy—part I. Apitherapy Rev. 2009;3:23.
Hegazi A.G. Medical importance of bee products. Uludağ Arıcılık Dergisi. 2012;12(4):136–46.
Jamasbi E, Lucky SS, Li W, Hossain MA, Gopalakrishnakone P, Separovic F. Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids. 2018;50:1101–10.
Article CAS PubMed Google Scholar
Liu C-C, Yang H, Zhang L-L, Zhang Q, Chen B, Wang Y. Biotoxins for cancer therapy. Asian Pac J Cancer Prev. 2014;15(12):4753–8.
El-Beltagy AE-FB, Elsyyad HI, Abdelaziz KK, Madany AS, Elghazaly MM. Therapeutic role of Annona muricata fruit and bee venom against MNU-induced breast cancer in pregnant rats and its complications on the ovaries. Breast Cancer: Targets Therapy. 2021;13:431–45.
Kwon N-Y, Sung S-H, Sung H-K, Park J-K. Anticancer activity of bee venom components against breast cancer. Toxins. 2022;14(7):460.
Article CAS PubMed PubMed Central Google Scholar
Liu X, Chen D, Xie L, Zhang R. Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol. 2002;54(8):1083–9.
Article CAS PubMed Google Scholar
Oršolic̃ N, Knez̆evic̃ A, Šver L, Terzic S, Hackenberger B, Bašic̃ I. Influence of honey bee products on transplantable murine tumours. Vet Comp Oncol. 2003;1(4):216–26.
Hong S-J, Rim GS, Yang HI, Yin CS, Koh HG, Jang M-H, Kim C-J, Choe B-K, Chung J-H. Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon. 2005;46(1):39–45.
Article CAS PubMed Google Scholar
Jang M-H, Shin M-C, Lim S, Han S-M, Park H-J, Shin I, Lee J-S, Kim K-A, Kim E-H, Kim C-J. Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J Pharmacol Sci. 2003;91(2):95–104.
Article CAS PubMed Google Scholar
Moon D-O, Park S-Y, Heo M-S, Kim K-C, Park C, Ko WS, Choi YH, Kim G-Y. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int Immunopharmacol. 2006;6(12):1796–807.
Article CAS PubMed Google Scholar
Tetikoğlu, S., Uzuner, S.C.: Bee venom induces the interaction between phosphorylated histone variant, γH2AX, and intracellular location of beta actin in cancer cells (2022)
Wang X, Chen XZ, Alcântara CC, Sevim S, Hoop M, Terzopoulou A, De Marco C, Hu C, de Mello AJ, Falcaro P. MOFBOTS: metal–organic-framework-based biomedical microrobots. Adv Mater. 2019;31(27):1901592.
Luo Y, Fan S, Yu W, Wu Z, Cullen DA, Liang C, Shi J, Su C. Fabrication of Au25 (SG) 18–ZIF-8 Nanocomposites: a facile strategy to position Au25 (SG) 18 nanoclusters inside and outside ZIF-8. Adv Mater. 2018;30(6):1704576.
Soltani B, Nabipour H, Nasab NA. Efficient storage of gentamicin in nanoscale zeolitic imidazolate framework-8 nanocarrier for pH-responsive drug release. J Inorg Organomet Polym Mater. 2018;28:1090–7.
Gao X, Hai X, Baigude H, Guan W, Liu Z. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport. Sci Rep. 2016;6(1):37705.
Article CAS PubMed PubMed Central Google Scholar
Wu M, Ye H, Zhao F, Zeng B. High-quality metal–organic framework zif-8 membrane supported on electrodeposited ZnO/2-methylimidazole nanocomposite: efficient adsorbent for the enrichment of acidic drugs. Sci Rep. 2017;7(1):39778.
留言 (0)