Lehmann BD, Abramson VG, Sanders ME, Mayer EL, Haddad TC, Nanda R, et al. TBCRC 032 IB/II multicenter study: molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR+ metastatic triple-negative breast cancer. Clin Cancer Res. 2020;26(9):2111–23.
Article PubMed CAS Google Scholar
Zhang Z, Zhang R, Li D. Molecular biology mechanisms and emerging therapeutics of triple-negative breast cancer. Biol Targets Ther. 2023;17:113–28.
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, et al. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol. 2023;16(1):1–36. https://doi.org/10.1186/s13045-023-01497-3.
Chen H, Yang J, Yang Y, Zhang J, Xu Y, Lu X. The natural products and extracts: anti-triple-negative breast cancer in vitro. Chem Biodivers. 2021. https://doi.org/10.1002/cbdv.202001047.
El-Dawy K, Mohamed D, Abdou Z. Nanoformulations of pentacyclic triterpenoids: chemoprevention and anticancer. Int J Vet Sci. 2022;11(3):384–91.
Farooqi AA, Turgambayeva A, Tashenova G, Tulebayeva A, Bazarbayeva A, Kapanova G, et al. Multifunctional roles of betulinic acid in cancer chemoprevention: spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and non-coding RNAs in the inhibition of carcinogenesis and metastasis. Molecules. 2023;28(1):67.
Shen M, Hu Y, Yang Y, Wang L, Yang X, Wang B, et al. Betulinic acid induces ROS-dependent apoptosis and S-phase arrest by inhibiting the NF-κB pathway in human multiple myeloma. Oxid Med Cell Longev. 2019;2019:8–10.
Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, et al. Oxidative stress in cancer cell metabolism. Antioxidants. 2021;10(5):1–28.
Bao Y, Zhang S, Chen Z, Chen AT, Ma J, Deng G, et al. Synergistic chemotherapy for breast cancer and breast cancer brain metastases via paclitaxel-loaded oleanolic acid nanoparticles. Mol Pharm. 2020;17(4):1343–51.
Article PubMed CAS Google Scholar
Huang R, Sun H, Lin R, Zhang J, Yin H, Xian S, et al. The role of tetraspanins pan-cancer. iScience. 2022;25(8):104777. https://doi.org/10.1016/j.isci.2022.104777.
Article PubMed PubMed Central CAS Google Scholar
Bailly C, Thuru X. Targeting of tetraspanin CD81 with monoclonal antibodies and small molecules to combat cancers and viral diseases. Cancers (Basel). 2023;15(7):1–22.
Hasterok S, Nyesiga B, Gjörloff-Wingre A. CD81 (cluster of differentiation 81). Atlas Genet Cytogenet Oncol Haematol. 2020;24(7):265–72.
Vences-Catalán F, Rajapaksa R, Kuo CC, Miller CL, Lee A, Ramani VC, et al. Targeting the tetraspanin CD81 reduces cancer invasion and metastasis. Proc Natl Acad Sci USA. 2021;118(24):1–8.
Vences-Catalán F, Duault C, Kuo CC, Rajapaksa R, Levy R, Levy S. CD81 as a tumor target. Biochem Soc Trans. 2017;45(2):531–5.
Hong IK, Byun HJ, Lee J, Jin YJ, Wang SJ, Jeoung DI, et al. The tetraspanin CD81 protein increases melanoma cell motility by Up-regulating metalloproteinase MT1-MMP expression through the pro-oncogenic Akt-dependent Sp1 activation signaling pathways. J Biol Chem. 2014;289(22):15691–704.
Article PubMed PubMed Central CAS Google Scholar
Hamada W, Kato-Kogoe N, Yamanegi K, Kanetake H, Hirata A, Terada T, et al. Tetraspanin CD81 is expressed in human parotid cancer tissue and mediates cell proliferation. J Oral Maxillofac Surgery, Med Pathol. 2024;36(3):300–7.
Park HS, Lee S, Lee J, Bin SH, Yoo SM, Lee MS, et al. Suppression of CD81 promotes bladder cancer cell invasion through increased matrix metalloproteinase expression via extracellular signal-regulated kinase phosphorylation. Investig Clin Urol. 2019;60(5):396–404.
Article PubMed PubMed Central Google Scholar
Mizoshiri N, Shirai T, Terauchi R, Tsuchida S, Mori Y, Hayashi D, et al. The tetraspanin CD81 mediates the growth and metastases of human osteosarcoma. Cell Oncol. 2019;42(6):861–71.
Zhang Y, Qian H, Xu A, Yang G. Increased expression of CD81 is associated with poor prognosis of prostate cancer and increases the progression of prostate cancer cells in vitro. Exp Ther Med. 2011;2019:755–61.
Zhang N, Zuo L, Zheng H, Li G, Hu X. Increased expression of CD81 in breast cancer tissue is associated with reduced patient prognosis and increased cell migration and proliferation in MDA-MB-231 and MDA-MB-435s human breast cancer cell lines in vitro. Med Sci Monit. 2018;24:5739–47.
Article PubMed PubMed Central CAS Google Scholar
Zaboli KA, Rahimi H, Thekkiniath J, Taromchi AH, Kaboli S. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line. Folia Histochem Cytobiol. 2022;60(1):13–23.
Rinendyaputri R, Dany F, Nikmah UA. Efek dimethyl sulfoxide (DMSO) terhadap Karakteristik Sel Punca Limbal (SPL) Tikus effects of dimethyl sulfoxide (DMSO) at Limbal Stem Cells Characteristics (LSCs) of rat. Indones J Med Sci. 2018;5(1):1–6.
Mu H, Sun Y, Yuan B, Wang Y. Fitoterapia Betulinic acid in the treatment of breast cancer : application and mechanism progress. Fitoterapia. 2023;169:105617. https://doi.org/10.1016/j.fitote.2023.105617.
Article PubMed CAS Google Scholar
Wang X, Wang S-S, Huang H, Cai L, Zhao L, Peng R-J, et al. Effect of capecitabine maintenance therapy using lower dosage and higher frequency vs observation on disease-free survival among patients with early-stage triple-negative breast cancer who had received standard treatment: the SYSUCC-001 randomized clinica. JAMA - J Am Med Assoc. 2021;325(1):50–8.
Liang Z, Pan R, Meng X, Su J, Guo Y, Wei G, et al. Transcriptome study of oleanolic acid in the inhibition of breast tumor growth based on high-throughput sequencing. Aging (Albany NY). 2021;13(19):22883–97.
Article PubMed CAS Google Scholar
Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis. In: Donev R, editor. Advances in protein chemistry and structural biology. Amsterdam: Elsevier; 2021. p. 73–120.
Green DR. Nonapoptotic cell death pathways. In: Cell death: apoptosis and other means to an end. 2nd ed, vol. 14. Cold Spring Harbor Laboratory Press; 2022. p. 1–24.
Simon H. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5:415–8.
Article PubMed CAS Google Scholar
Xu T, Pang Q, Wang Y, Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int J Mol Med. 2017;40(6):1669–78.
PubMed PubMed Central CAS Google Scholar
Shen H, Liu L, Yang Y, Xun W, Wei K, Zeng G. Betulinic acid inhibits cell proliferation in human oral squamous cell carcinoma via modulating ROS-regulated p53 signaling. Oncol Res. 2017;25(7):1141–52.
Article PubMed PubMed Central Google Scholar
Zeng A, Hua H, Liu L, Zhao J. Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorganic Med Chem. 2019;27(12):2546–52. https://doi.org/10.1016/j.bmc.2019.03.033.
Yao N, Li YJ, Lei YH, Hu N, Chen WM, Yao Z, et al. A piperazidine derivative of 23-hydroxy betulinic acid induces a mitochondria-derived ROS burst to trigger apoptotic cell death in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2016;35(1):1–15. https://doi.org/10.1186/s13046-016-0457-1.
Tiwari R, Puthli A, Balakrishnan S, Sapra BK, Mishra KP. Betulinic acid-induced cytotoxicity in human breast tumor cell lines MCF-7 and T47D and its modification by tocopherol. Cancer Investig. 2014. https://doi.org/10.3109/07357907.2014.933234.
Gao Y, Ma Q, Bin MY, Ding L, Xu XL, Wei DF, et al. Betulinic acid induces apoptosis and ultrastructural changes in MDA-MB-231 breast cancer cells. Ultrastruct Pathol. 2018;42(1):49–54. https://doi.org/10.1080/01913123.2017.1383548.
Sun Y-F, Song C-K, Viernstein H, Unger F, Liang Z-S. Apoptosis of human breast cancer cells induced by microencapsulated betulinic acid from sour jujube fruits through the mitochondria transduction pathway. Food Chem. 2013;138(2–3):1998–2007.
Article PubMed CAS Google Scholar
Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, Armania N, et al. Dillenia suffruticosa dichloromethane root extract ind
留言 (0)